reduced graphite oxide
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 48)

H-INDEX

34
(FIVE YEARS 6)

2022 ◽  
Vol 9 ◽  
Author(s):  
Ting-Wen Chen ◽  
Da-Wei Pang ◽  
Jian-Xin Kang ◽  
Dong-Feng Zhang ◽  
Lin Guo

In this paper, we report the construction of network-like platinum (Pt) nanosheets based on Pt/reduced graphite oxide (Pt/rGO) hybrids by delicately utilizing a calorific-effect-induced-fusion strategy. The tiny Pt species first catalyzed the H2-O2 combination reaction. The released heat triggered the combustion of the rGO substrate under the assistance of the Pt species catalysis, which induced the fusion of the tiny Pt species into a network-like nanosheet structure. The loading amount and dispersity of Pt on rGO are found to be crucial for the successful construction of network-like Pt nanosheets. The as-prepared products present excellent catalytic hydrogenation activity and superior stability towards unsaturated bonds such as olefins and nitrobenzene. The styrene can be completely converted into phenylethane within 60 min. The turnover frequency (TOF) value of network-like Pt nanosheets is as high as 158.14 h−1, which is three times higher than that of the home-made Pt nanoparticles and among the highest value of the support-free bimetallic catalysts ever reported under similar conditions. Furthermore, the well dispersibility and excellent aggregation resistance of the network-like structure endows the catalyst with excellent recyclability. The decline of conversion could be hardly identified after five times recycling experiments.


Author(s):  
Lorenza Maddalena ◽  
Tobias Benselfelt ◽  
Julio Gomez ◽  
Mahiar Max Hamedi ◽  
Alberto Fina ◽  
...  

2021 ◽  
Vol 415 ◽  
pp. 128907
Author(s):  
Dimitrios A. Giannakoudakis ◽  
Kumar Vikrant ◽  
Alec P. LaGrow ◽  
Dmytro Lisovytskiy ◽  
Ki-Hyun Kim ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Thi Hai Yen Pham ◽  
Thi Trang Mai ◽  
Hoang Anh Nguyen ◽  
Thi Thu Hien Chu ◽  
Thi Thu Ha Vu ◽  
...  

A reduced graphite oxide nanosheet electrode (RGOnS) was prepared as a sensor for amoxicillin (AMX) detection, an antibiotic commonly used in the livestock farm, by the square-wave adsorptive stripping voltammetry technique. Graphite oxide with nanosheet shape was produced from a graphite electrode by a chronoamperometry process at 5 V and then an electrochemical reduction process was carried out to form RGOnS with restored long-range conjugated networks and better conductivity. The electrodes were characterized by SEM, EDX, and FTIR spectroscopy. The RGOnS electrode prepared at an optimal reduction potential of −1 V for 120 s exhibits a larger electrochemical active surface area, and the obtained oxidation signal of AMX is approximately ten times higher than that of the pristine graphite electrode. The analytical conditions such as the pH of electrolyte and accumulation time were optimized. The calibration curve built under the optimal conditions provided a good linear relationship in the range of AMX concentration from 0.5–80 µM with the correlation coefficient of 0.9992. The limit of detection was calculated as 0.193 µM. Satisfactory results are obtained from the detection of the AMX in different samples using the prepared electrode.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1008
Author(s):  
Kiriaki Chrissopoulou ◽  
Krystalenia Androulaki ◽  
Massimiliano Labardi ◽  
Spiros H. Anastasiadis

Nanocomposites of hyperbranched polymers with graphitic materials are investigated with respect to their structure and thermal properties as well as the dynamics of the polymer probing the effect of the different intercalated or exfoliated structure. Three generations of hyperbranched polyester polyols are mixed with graphite oxide (GO) and the favorable interactions between the polymers and the solid surfaces lead to intercalated structure. The thermal transitions of the confined chains are suppressed, whereas their dynamics show similarities and differences with the dynamics of the neat polymers. The three relaxation processes observed for the neat polymers are observed in the nanohybrids as well, but with different temperature dependencies. Thermal reduction of the graphite oxide in the presence of the polymer to produce reduced graphite oxide (rGO) reveals an increase in the reduction temperature, which is accompanied by decreased thermal stability of the polymer. The de-oxygenation of the graphite oxide leads to the destruction of the intercalated structure and to the dispersion of the rGO layers within the polymeric matrix because of the modification of the interactions between the polymer chains and the surfaces. A significant increase in the conductivity of the resulting nanocomposites, in comparison to both the polymers and the intercalated nanohybrids, indicates the formation of a percolated rGO network.


2021 ◽  
Vol 51 (5) ◽  
pp. 753-760
Author(s):  
Huan Li ◽  
Qian Li ◽  
Ling Li ◽  
Xiaoyan Cao ◽  
Wei Wang

Sign in / Sign up

Export Citation Format

Share Document