bimetallic catalysts
Recently Published Documents


TOTAL DOCUMENTS

1393
(FIVE YEARS 319)

H-INDEX

79
(FIVE YEARS 12)

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 122963
Author(s):  
Qian Wu ◽  
Shuyu Liang ◽  
Tianyu Zhang ◽  
Benoit Louis ◽  
Qiang Wang

2022 ◽  
Author(s):  
Lihui Ou

Abstract A deeper mechanistic understanding on CH3OH oxidation on Pt-Ru alloys with different Ru surface compositions is provided by DFT-based theoretical studies in this paper. The present results show that alloying and surface compositions of Ru can change CH3OH oxidation pathway and activity. The optimal surface composition of Ru is speculated to be ca. 50% since the higher Ru surface composition can lead to formation of carbonaceous species that can poison surface. Our present calculated Ru surface composition of ca. 50% exhibits excellent consistency with experimental studies. The origin of enhanced catalytic activity of Pt-Ru alloys is determined. The significantly decreased surface work functions after alloying suggest more electrons are transferred into adsorbates. The calculated lower electrode potentials after alloying imply that lower overpotentials are required for CH3OH oxidation. The excellent inconsistency with experimental study on decreased onset potentials after alloying further confirms accuracy of our present calculated results.


Eng ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 60-77
Author(s):  
Nobutaka Yamanaka ◽  
Shogo Shimazu

Metallic Ni shows high activity for a variety of hydrogenation reactions due to its intrinsically high capability for H2 activation, but it suffers from low chemoselectivity for target products when two or more reactive functional groups are present on one molecule. Modification by other metals changes the geometric and electronic structures of the monometallic Ni catalyst, providing an opportunity to design Ni-based bimetallic catalysts with improved activity, chemoselectivity, and durability. In this review, the hydrogenation properties of these catalysts are described starting from the typical methods of preparing Ni-based bimetallic nanoparticles. In most cases, the reasons for the enhanced catalysis are discussed based on the geometric and electronic effects. This review provides new insights into the development of more efficient and well-structured non-noble metal-based bimetallic catalytic systems for chemoselective hydrogenation reactions.


2022 ◽  
Vol 9 ◽  
Author(s):  
Ting-Wen Chen ◽  
Da-Wei Pang ◽  
Jian-Xin Kang ◽  
Dong-Feng Zhang ◽  
Lin Guo

In this paper, we report the construction of network-like platinum (Pt) nanosheets based on Pt/reduced graphite oxide (Pt/rGO) hybrids by delicately utilizing a calorific-effect-induced-fusion strategy. The tiny Pt species first catalyzed the H2-O2 combination reaction. The released heat triggered the combustion of the rGO substrate under the assistance of the Pt species catalysis, which induced the fusion of the tiny Pt species into a network-like nanosheet structure. The loading amount and dispersity of Pt on rGO are found to be crucial for the successful construction of network-like Pt nanosheets. The as-prepared products present excellent catalytic hydrogenation activity and superior stability towards unsaturated bonds such as olefins and nitrobenzene. The styrene can be completely converted into phenylethane within 60 min. The turnover frequency (TOF) value of network-like Pt nanosheets is as high as 158.14 h−1, which is three times higher than that of the home-made Pt nanoparticles and among the highest value of the support-free bimetallic catalysts ever reported under similar conditions. Furthermore, the well dispersibility and excellent aggregation resistance of the network-like structure endows the catalyst with excellent recyclability. The decline of conversion could be hardly identified after five times recycling experiments.


RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 602-610
Author(s):  
Yingxin Liu ◽  
Kai Liu ◽  
Meihua Zhang ◽  
Kaiyue Zhang ◽  
Jiao Ma ◽  
...  

Herein, we report a highly efficient and recyclable Cu–Re(1 : 1)/TiO2 bimetallic catalyst for liquid phase hydrogenation of levulinic acid to γ-valerolactone.


2022 ◽  
Vol 156 ◽  
pp. 106317
Author(s):  
Isabella C.A. Souza ◽  
Robinson L. Manfro ◽  
Mariana M.V.M. Souza

2022 ◽  
Vol 571 ◽  
pp. 151350
Author(s):  
M.A. Panafidin ◽  
A.V. Bukhtiyarov ◽  
I.P. Prosvirin ◽  
I.A. Chetyrin ◽  
A. Yu Klyushin ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 118
Author(s):  
Jingyuan Bai ◽  
Jin Zhang ◽  
Konrad Eiler ◽  
Zhou Yang ◽  
Longyi Fan ◽  
...  

Ni-based bimetallic films with 20 at.% and 45 at.% Cu and mesostructured surfaces were prepared by electrodeposition from an aqueous solution containing micelles of P123 triblock copolymer serving as a structure-directing agent. The pH value of the electrolytic solution had a key effect on both the resulting Cu/Ni ratio and the surface topology. The catalytic activity of the CuNi films toward hydrogen evolution reaction was investigated by cyclic voltammetry (CV) in 1 M KOH electrolyte at room temperature. The Cu45Ni55 film showed the highest activity (even higher than that of a non-mesostructured pure Ni film), which was attributed to the Ni content at the utmost surface, as demonstrated by CV studies, as well as the presence of a highly corrugated surface.


Sign in / Sign up

Export Citation Format

Share Document