A solid support‐based synthetic strategy for the site‐selective functionalization of peptides with organometallic half‐sandwich moieties

Author(s):  
Dianna Truong ◽  
Nelson Y.S. Lam ◽  
Meder Kamalov ◽  
Mie Riisom ◽  
Stephen M.F. Jamieson ◽  
...  
2019 ◽  
Author(s):  
Sandeep Pimparkar ◽  
Trisha Bhattacharya ◽  
Arun Maji ◽  
Argha Saha ◽  
Ramasamy Jayarajan ◽  
...  

The significance of site selective functionalization stands upon the superior selectivity, easy synthesis and diverse product utility. In this work we demonstrate the <i>para</i>-selective introduction of versatile nitrile moiety, enabled by detachable and reusable H-bonded auxiliary. The methodology holds its efficiency irrespective of substrate electronic bias. The conspicuous shift in the step energetics was probed by both experimental and computational mechanistic tools heralds the inception of <i>para</i>-deuteration. The synthetic impact of the methodology was highlighted with reusability of directing group and post synthetic modifications


2019 ◽  
Author(s):  
Sandeep Pimparkar ◽  
Trisha Bhattacharya ◽  
Arun Maji ◽  
Argha Saha ◽  
Ramasamy Jayarajan ◽  
...  

The significance of site selective functionalization stands upon the superior selectivity, easy synthesis and diverse product utility. In this work we demonstrate the <i>para</i>-selective introduction of versatile nitrile moiety, enabled by detachable and reusable H-bonded auxiliary. The methodology holds its efficiency irrespective of substrate electronic bias. The conspicuous shift in the step energetics was probed by both experimental and computational mechanistic tools heralds the inception of <i>para</i>-deuteration. The synthetic impact of the methodology was highlighted with reusability of directing group and post synthetic modifications


2019 ◽  
Author(s):  
Idriss Curbet ◽  
Sophie Colombel-Rouen ◽  
Romane Manguin ◽  
Anthony Clermont ◽  
Alexandre Quelhas ◽  
...  

<div> <div> <div> <div> <p>The synthesis of conjugated triynes by molybdenum-catalyzed alkyne metathesis is reported. Strategic to the success of this approach is the utilization of sterically-hindered diynes that allowed for the site- selective alkyne metathesis to produce the desired con- jugated triyne products. The steric hindrance of alkyne moiety was found to be crucial in preventing the for- mation of diyne byproducts. This novel synthetic strategy was amenable to self- and cross-metathesis providing straightforward access to the corresponding symmetrical and dissymmetrical triynes with high selectivity. </p> </div> </div> </div> </div>


2017 ◽  
Vol 65 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Hironori Takeuchi ◽  
Yoshihiro Ueda ◽  
Takumi Furuta ◽  
Takeo Kawabata

2018 ◽  
Vol 118 (23) ◽  
pp. 11457-11517 ◽  
Author(s):  
Victoria Dimakos ◽  
Mark S. Taylor

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Hui Chen ◽  
Wenjing Fan ◽  
Xiang-Ai Yuan ◽  
Shouyun Yu

Abstract Radical translocation processes triggered by nitrogen-centered radicals (NCRs), such as 1,5-hydrogen atom transfers (1,5-HAT), demonstrated by the well-established Hofmann-Löffler-Freytag (HLF) reaction, provide an attractive approach for the controllable and selective functionalization of remote inert C(sp3)–H bonds. Here we report an amidyl radical-triggered site-selective remote C(sp3)–H heteroarylation of amides under organic photoredox conditions. This approach provides a mild and highly regioselective reaction affording remote C(sp3)–H heteroarylated amides at room temperature under transition-metal free, weakly basic, and redox-neutral conditions. Non-prefunctionalized heteroarenes, such as purines, thiazolopyridines, benzoxazole, benzothiazoles, benzothiophene, benzofuran, thiazoles and quinoxalines, can be alkylated directly. Sequential and orthogonal C–H functionalization of different heteroarenes by taking advantage pH value or polarity of radicals has also been achieved. DFT calculations explain and can predict the site-selectivity and reactivity of this reaction. This strategy expands the scope of the Minisci reaction and serves as its alternative and potential complement.


Sign in / Sign up

Export Citation Format

Share Document