ChemInform Abstract: ENERGY BARRIER TO SYMMETRY-FORBIDDEN 1,3-HYDROGEN SHIFTS IN SIMPLE OXONIUM IONS, METASTABLE PEAKS FROM FAST DISSOCIATIONS

1975 ◽  
Vol 6 (33) ◽  
pp. no-no
Author(s):  
GEORG HVISTENDAHL ◽  
DUDLEY H. WILLIAMS
2019 ◽  
Author(s):  
Tian Han ◽  
Marcus J. Giansiracusa ◽  
Zi-Han Li ◽  
You-Song Ding ◽  
Nicholas F. Chilton ◽  
...  

A dichlorido-bridged dinuclear dysprosium(III) single-molecule magnet [Dy<sub>2</sub>L<sub>2</sub>(<i>µ</i>-Cl)<sub>2</sub>(THF)<sub>2</sub>] has been made using a diamine-bis(phenolate) ligand, H<sub>2</sub>L. Magnetic studies show an energy barrier for magnetization reversal (<i>U</i><sub>eff</sub>) around 1000 K. Exchange-biasing effect is clearly seen in magnetic hysteresis with steps up to 4 K. <i>Ab</i> initio calculations exclude the possibility of pure dipolar origin of this effect leading to the conclusion that super-exchange <i>via</i> the chloride bridging ligands is important.


2018 ◽  
Author(s):  
Marcus J. Giansiracusa ◽  
Andreas Kostopoulos ◽  
George F. S. Whitehead ◽  
David Collison ◽  
Floriana Tuna ◽  
...  

We report a six coordinate DyIII single-molecule magnet<br>(SMM) with an energy barrier of 1110 K for thermal relaxation of<br>magnetization. The sample shows no retention of magnetization<br>even at 2 K and this led us to find a good correlation between the<br>blocking temperature and the Raman relaxation regime for SMMs.<br>The key parameter is the relaxation time (𝜏<sub>switch</sub>) at the point where<br>the Raman relaxation mechanism becomes more important than<br>Orbach.


1989 ◽  
Vol 128 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Piotr Warszynski ◽  
Jan Czarnecki
Keyword(s):  

2018 ◽  
Vol 17 (08) ◽  
pp. 1850050 ◽  
Author(s):  
Qiuhan Luo ◽  
Gang Li ◽  
Junping Xiao ◽  
Chunhui Yin ◽  
Yahui He ◽  
...  

Sulfonylureas are an important group of herbicides widely used for a range of weeds and grasses control particularly in cereals. However, some of them tend to persist for years in environments. Hydrolysis is the primary pathway for their degradation. To understand the hydrolysis behavior of sulfonylurea herbicides, the hydrolysis mechanism of metsulfuron-methyl, a typical sulfonylurea, was investigated using density functional theory (DFT) at the B3LYP/6-31[Formula: see text]G(d,p) level. The hydrolysis of metsulfuron-methyl resembles nucleophilic substitution by a water molecule attacking the carbonyl group from aryl side (pathway a) or from heterocycle side (pathway b). In the direct hydrolysis, the carbonyl group is directly attacked by one water molecule to form benzene sulfonamide or heterocyclic amine; the free energy barrier is about 52–58[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. In the autocatalytic hydrolysis, with the second water molecule acting as a catalyst, the free energy barrier, which is about 43–45[Formula: see text]kcal[Formula: see text]mol[Formula: see text], is remarkably reduced by about 11[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. It is obvious that water molecules play a significant catalytic role during the hydrolysis of sulfonylureas.


2021 ◽  
Author(s):  
Kexin Jia ◽  
Xixi Meng ◽  
Mengmeng Wang ◽  
Xiaoshuang Gou ◽  
Yu-Xia Wang ◽  
...  

The energy barrier and hysteresis temperature in two benchtop-stable D5h-symmetry HoIII single-ion magnets were significantly enhanced via the variation of halogen anion. The coexistence of high energy barrier of 418...


1999 ◽  
Vol 23 (10) ◽  
pp. 616-617
Author(s):  
Issa Yavari ◽  
Hassan Norouzi-Arasi ◽  
Hossain Fallah-Bagher-Shaidaei

The unsymmetrical boat-chair BC conformation of ( Z,Z)-cyclonona-1,3-diene is calculated to be 5 kJ mol−1 more stable than the axial-symmetrical twist-boat-chair TBC form; while the calculated energy barrier for limited pseudorotation of BC and TBC is only 10.2kJ mol−1, ring inversion of BC via plane-symmetrical boat geometry requires 24.4 kJ mol−1.


Sign in / Sign up

Export Citation Format

Share Document