Transfer of particles over a randomly fluctuating energy barrier

1989 ◽  
Vol 128 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Piotr Warszynski ◽  
Jan Czarnecki
Keyword(s):  
2019 ◽  
Author(s):  
Tian Han ◽  
Marcus J. Giansiracusa ◽  
Zi-Han Li ◽  
You-Song Ding ◽  
Nicholas F. Chilton ◽  
...  

A dichlorido-bridged dinuclear dysprosium(III) single-molecule magnet [Dy<sub>2</sub>L<sub>2</sub>(<i>µ</i>-Cl)<sub>2</sub>(THF)<sub>2</sub>] has been made using a diamine-bis(phenolate) ligand, H<sub>2</sub>L. Magnetic studies show an energy barrier for magnetization reversal (<i>U</i><sub>eff</sub>) around 1000 K. Exchange-biasing effect is clearly seen in magnetic hysteresis with steps up to 4 K. <i>Ab</i> initio calculations exclude the possibility of pure dipolar origin of this effect leading to the conclusion that super-exchange <i>via</i> the chloride bridging ligands is important.


2018 ◽  
Author(s):  
Marcus J. Giansiracusa ◽  
Andreas Kostopoulos ◽  
George F. S. Whitehead ◽  
David Collison ◽  
Floriana Tuna ◽  
...  

We report a six coordinate DyIII single-molecule magnet<br>(SMM) with an energy barrier of 1110 K for thermal relaxation of<br>magnetization. The sample shows no retention of magnetization<br>even at 2 K and this led us to find a good correlation between the<br>blocking temperature and the Raman relaxation regime for SMMs.<br>The key parameter is the relaxation time (𝜏<sub>switch</sub>) at the point where<br>the Raman relaxation mechanism becomes more important than<br>Orbach.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850050 ◽  
Author(s):  
Qiuhan Luo ◽  
Gang Li ◽  
Junping Xiao ◽  
Chunhui Yin ◽  
Yahui He ◽  
...  

Sulfonylureas are an important group of herbicides widely used for a range of weeds and grasses control particularly in cereals. However, some of them tend to persist for years in environments. Hydrolysis is the primary pathway for their degradation. To understand the hydrolysis behavior of sulfonylurea herbicides, the hydrolysis mechanism of metsulfuron-methyl, a typical sulfonylurea, was investigated using density functional theory (DFT) at the B3LYP/6-31[Formula: see text]G(d,p) level. The hydrolysis of metsulfuron-methyl resembles nucleophilic substitution by a water molecule attacking the carbonyl group from aryl side (pathway a) or from heterocycle side (pathway b). In the direct hydrolysis, the carbonyl group is directly attacked by one water molecule to form benzene sulfonamide or heterocyclic amine; the free energy barrier is about 52–58[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. In the autocatalytic hydrolysis, with the second water molecule acting as a catalyst, the free energy barrier, which is about 43–45[Formula: see text]kcal[Formula: see text]mol[Formula: see text], is remarkably reduced by about 11[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. It is obvious that water molecules play a significant catalytic role during the hydrolysis of sulfonylureas.


2021 ◽  
Author(s):  
Kexin Jia ◽  
Xixi Meng ◽  
Mengmeng Wang ◽  
Xiaoshuang Gou ◽  
Yu-Xia Wang ◽  
...  

The energy barrier and hysteresis temperature in two benchtop-stable D5h-symmetry HoIII single-ion magnets were significantly enhanced via the variation of halogen anion. The coexistence of high energy barrier of 418...


1999 ◽  
Vol 23 (10) ◽  
pp. 616-617
Author(s):  
Issa Yavari ◽  
Hassan Norouzi-Arasi ◽  
Hossain Fallah-Bagher-Shaidaei

The unsymmetrical boat-chair BC conformation of ( Z,Z)-cyclonona-1,3-diene is calculated to be 5 kJ mol−1 more stable than the axial-symmetrical twist-boat-chair TBC form; while the calculated energy barrier for limited pseudorotation of BC and TBC is only 10.2kJ mol−1, ring inversion of BC via plane-symmetrical boat geometry requires 24.4 kJ mol−1.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 454
Author(s):  
Bo Yu ◽  
Ya Liu ◽  
Lianqi Wei ◽  
Xiaomeng Zhang ◽  
Yingchao Du ◽  
...  

In this paper, a mechanism of anti-oxidation coating design based on the inhibition effect of the interface layer on the diffusion of ions within oxide scale was introduced. The Fe2+ ions diffusion behavior in Fe3O4, Cr2FeO4, and FeAl2O4 were studied by molecular dynamics method of Nudged elastic bond. As the result shown, Fe2+ ions tended to diffuse through the vacancy at tetrahedral site in Cr2FeO4 and FeAl2O4, but diffuse through the octahedral vacancy in Fe3O4. When temperature ranged from 1073 to 1325 K, the energy barrier of Fe2+ ions diffusion in Cr2FeO4 was higher than that of FeAl2O4, and both of that were still obvious higher than that in Fe3O4. A new anti-oxidation coating was prepared based on the inhibition of interface layer consisted of FeAl2O4 to protect the carbon steel S235JR at 1200 °C for 2 h. The FeAl2O4 region was formed and observed at the interface between coating and Fe element diffusion area, and the mullite phase was distributed outside of the FeAl2O4 region. Comparing to the bare sample, the prepared coating exhibited an excellent anti-oxidation effect.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanming Cai ◽  
Jiaju Fu ◽  
Yang Zhou ◽  
Yu-Chung Chang ◽  
Qianhao Min ◽  
...  

AbstractSingle-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40 mA·cm-2 in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H2 energy barrier and fine-tuned electronic structure of Cu active sites.


Sign in / Sign up

Export Citation Format

Share Document