conformational properties
Recently Published Documents


TOTAL DOCUMENTS

1610
(FIVE YEARS 95)

H-INDEX

63
(FIVE YEARS 5)

2021 ◽  
Vol 23 (1) ◽  
pp. 473
Author(s):  
Olgun Guvench ◽  
Devon Martin ◽  
Megan Greene

The conformational properties of carbohydrates can contribute to protein structure directly through covalent conjugation in the cases of glycoproteins and proteoglycans and indirectly in the case of transmembrane proteins embedded in glycolipid-containing bilayers. However, there continue to be significant challenges associated with experimental structural biology of such carbohydrate-containing systems. All-atom explicit-solvent molecular dynamics simulations provide a direct atomic resolution view of biomolecular dynamics and thermodynamics, but the accuracy of the results depends on the quality of the force field parametrization used in the simulations. A key determinant of the conformational properties of carbohydrates is ring puckering. Here, we applied extended system adaptive biasing force (eABF) all-atom explicit-solvent molecular dynamics simulations to characterize the ring puckering thermodynamics of the ten common pyranose monosaccharides found in vertebrate biology (as represented by the CHARMM carbohydrate force field). The results, along with those for idose, demonstrate that the CHARMM force field reliably models ring puckering across this diverse set of molecules, including accurately capturing the subtle balance between 4C1 and 1C4 chair conformations in the cases of iduronate and of idose. This suggests the broad applicability of the force field for accurate modeling of carbohydrate-containing vertebrate biomolecules such as glycoproteins, proteoglycans, and glycolipids.


Author(s):  
Nikitas Georgiou ◽  
Niki Gouleni ◽  
Eleni Chontzopoulou ◽  
George S. Skoufas ◽  
Anastasios Gkionis ◽  
...  

2021 ◽  
Author(s):  
Thuy P Dao ◽  
Yiran Yang ◽  
Michael S Cosgrove ◽  
Jesse B. Hopkins ◽  
Weikang Ma ◽  
...  

Ubiquitin-binding shuttle UBQLN2 mediates crosstalk between proteasomal degradation and autophagy, likely via interactions with K48- and K63-linked polyubiquitin chains, respectively. UBQLN2 is recruited to stress granules in cells and undergoes liquid-liquid phase separation (LLPS) in vitro. However, interactions with ubiquitin or multivalent K48-linked chains eliminate LLPS. Here, we found that, although some polyubiquitin chain types (K11-Ub4 and K48-Ub4) did generally inhibit UBQLN2 LLPS, others (K63-Ub4, M1-Ub4 and a designed tetrameric ubiquitin construct) significantly enhanced LLPS. Using nuclear magnetic resonance (NMR) spectroscopy and complementary biophysical techniques, we demonstrated that these opposing effects stem from differences in chain conformations, but not in affinities between chains and UBQLN2. Chains with extended conformations and increased accessibility to the ubiquitin binding surface significantly promoted UBQLN2 LLPS by enabling a switch between homotypically to partially heterotypically-driven phase separation. Our study provides mechanistic insights into how the structural and conformational properties of polyubiquitin chains contribute to heterotypic phase separation with ubiquitin-binding shuttles and adaptors.


2021 ◽  
Vol 2 (2) ◽  
pp. 795-813
Author(s):  
Davy Sinnaeve ◽  
Abir Ben Bouzayene ◽  
Emile Ottoy ◽  
Gert-Jan Hofman ◽  
Eva Erdmann ◽  
...  

Abstract. Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering – they introduce conformational and dynamical biases – but their use as 19F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where Cγ-fluorinated prolines with opposite configurations of the chiral Cγ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4R)-fluoroproline and (4S)-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.


2021 ◽  
Vol 18 (184) ◽  
Author(s):  
Naoki Takeishi ◽  
Taiki Shigematsu ◽  
Ryogo Enosaki ◽  
Shunichi Ishida ◽  
Satoshi Ii ◽  
...  

Thrombi form a micro-scale fibrin network consisting of an interlinked structure of nanoscale protofibrils, resulting in haemostasis. It is theorized that the mechanical effect of the fibrin clot is caused by the polymeric protofibrils between crosslinks, or to their dynamics on a nanoscale order. Despite a number of studies, however, it is still unknown, how the nanoscale protofibril dynamics affect the formation of the macro-scale fibrin clot and thus its mechanical properties. A mesoscopic framework would be useful to tackle this multi-scale problem, but it has not yet been established. We thus propose a minimal mesoscopic model for protofibrils based on Brownian dynamics, and performed numerical simulations of protofibril aggregation. We also performed stretch tests of polymeric protofibrils to quantify the elasticity of fibrin clots. Our model results successfully captured the conformational properties of aggregated protofibrils, e.g., strain-hardening response. Furthermore, the results suggest that the bending stiffness of individual protofibrils increases to resist extension.


2021 ◽  
Vol 155 (13) ◽  
pp. 134905
Author(s):  
Alexandros Chremos ◽  
Ferenc Horkay ◽  
Jack F. Douglas

Sign in / Sign up

Export Citation Format

Share Document