Enhancing the energy barrier and hysteresis temperature in two benchtop-stable Ho(III) single-ion magnets

2021 ◽  
Author(s):  
Kexin Jia ◽  
Xixi Meng ◽  
Mengmeng Wang ◽  
Xiaoshuang Gou ◽  
Yu-Xia Wang ◽  
...  

The energy barrier and hysteresis temperature in two benchtop-stable D5h-symmetry HoIII single-ion magnets were significantly enhanced via the variation of halogen anion. The coexistence of high energy barrier of 418...

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanming Cai ◽  
Jiaju Fu ◽  
Yang Zhou ◽  
Yu-Chung Chang ◽  
Qianhao Min ◽  
...  

AbstractSingle-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40 mA·cm-2 in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H2 energy barrier and fine-tuned electronic structure of Cu active sites.


Author(s):  
Matilde Fondo ◽  
Julio Corredoira-Vázquez ◽  
Ana M. Garcia-Deibe ◽  
Jesus Sanmartin Matalobos ◽  
Silvia Gómez-Coca ◽  
...  

Dinuclear [M(H3L1,2,4)]2 (M = Dy, Dy2; M = Ho, Ho2) complexes were isolated from an heptadentate aminophenol ligand. The crystal structures of Dy2·2THF, and the pyridine adducts Dy2·2Py and Ho2·2Py,...


2015 ◽  
Vol 14 (03) ◽  
pp. 1550020 ◽  
Author(s):  
Yuan Yuan ◽  
Wei Hu ◽  
Xuhui Chi ◽  
Cuihua Li ◽  
Dayong Gui ◽  
...  

The oxidation mechanism of diethyl ethers by NO2was carried out using density functional theory (DFT) at the B3LYP/6-31+G (d, p) level. The oxidation process of ether follows four steps. First, the diethyl ether reacts with NO2to produce HNO2and diethyl ether radical with an energy barrier of 20.62 kcal ⋅ mol-1. Then, the diethyl ether radical formed in the first step directly combines with NO2to form CH3CH ( ONO ) OCH2CH3. In the third step, the CH3CH ( ONO ) OCH2CH3was further decomposed into the CH3CH2ONO and CH3CHO with a moderately high energy barrier of 32.87 kcal ⋅ mol-1. Finally, the CH3CH2ONO continues to react with NO2to yield CH3CHO , HNO2and NO with an energy barrier of 28.13 kcal ⋅ mol-1. The calculated oxidation mechanism agrees well with Nishiguchi and Okamoto's experiment and proposal.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Yvonne Rechkemmer ◽  
Frauke D. Breitgoff ◽  
Margarethe van der Meer ◽  
Mihail Atanasov ◽  
Michael Hakl ◽  
...  

2014 ◽  
Vol 20 (44) ◽  
pp. 14262-14269 ◽  
Author(s):  
Itziar Oyarzabal ◽  
José Ruiz ◽  
José Manuel Seco ◽  
Marco Evangelisti ◽  
Agustín Camón ◽  
...  

CrystEngComm ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 1193-1199 ◽  
Author(s):  
Mikhail A. Zykin ◽  
Artem A. Eliseev ◽  
Mariam A. Pogosova ◽  
Lev A. Trusov ◽  
Walter Schnelle ◽  
...  

The atomic group O–Co–O persists in the apatite channel and retains a high energy barrier for magnetization reversal.


2017 ◽  
Vol 53 (39) ◽  
pp. 5416-5419 ◽  
Author(s):  
Pavel E. Kazin ◽  
Mikhail A. Zykin ◽  
Lev A. Trusov ◽  
Artem A. Eliseev ◽  
Oxana V. Magdysyuk ◽  
...  

A Co-ion introduced into the trigonal channel of an apatite-type lattice forms a magnetically anisotropic two-coordinated Co-complex with a record-high spin-reversal energy barrier.


Sign in / Sign up

Export Citation Format

Share Document