ChemInform Abstract: ANODIC CORROSION RATE MEASUREMENTS IN LITHIUM CHLORIDE-POTASSIUM CHLORIDE EUTECTIC. II. RESULTS ON NICKEL, MOLYBDENUM, AND STAINLESS STEEL

1979 ◽  
Vol 10 (43) ◽  
Author(s):  
D. D. RALEIGH ◽  
J. T. WHITE ◽  
C. A. OGDEN
1958 ◽  
Vol 30 (7) ◽  
pp. 1266-1270 ◽  
Author(s):  
H. A. Laitinen ◽  
C. H. Liu ◽  
W. S. Ferguson

1958 ◽  
Vol 36 (11) ◽  
pp. 1511-1517 ◽  
Author(s):  
A. N. Campbell ◽  
E. M. Kartzmark ◽  
E. G. Lovering

In the reciprocal salt pair Li2, K2, Cl2, SO4, and water, at 25 °C there are large areas in which potassium sulphate and potassium lithium sulphate (KLiSO4) are separately in equilibrium with solution. Two incongruent invariant points exist. At one of these the composition of the solution is 0.917 mole fraction chloride, 0.437 mole fraction lithium, and 19.4 moles of water per total mole of salt, the equilibrium solid phases being potassium chloride, potassium sulphate, and the double salt. At the second, the composition of the solution is 0.967 mole fraction chloride, 0.870 mole fraction lithium, and 13.8 moles of water per mole of salt, the solid phases being potassium chloride, double salt, and lithium sulphate monohydrate. One congruent invariant point exists, at which the composition of the solution is 1.00 mole fraction chloride, 0.960 mole fraction lithium, and 9.6 moles of water per mole of salt, the solid phases being lithium sulphate monohydrate, lithium chloride monohydrate, and potassium chloride.In the reciprocal salt pair Li2, Na2, Cl2, SO4, and water, at 25 °C there is an incongruent invariant point at which the composition of the solution is 0.873 mole fraction chloride, 0.668 mole fraction lithium, and 15.1 moles water per total mole of salt, the solid phases being sodium chloride, solid solution of sodium and lithium sulphates, and lithium sulphate monohydrate. A congruent invariant point exists, at which the composition of the solution is practically entirely lithium chloride, the solid phases present being lithium chloride monohydrate, lithium sulphate monohydrate, and sodium chloride.


2013 ◽  
Vol 43 (12) ◽  
pp. 1235-1241 ◽  
Author(s):  
L. D. Brown ◽  
R. Abdulaziz ◽  
S. Simons ◽  
D. Inman ◽  
D. J. L. Brett ◽  
...  

CORROSION ◽  
10.5006/2558 ◽  
2017 ◽  
Vol 74 (5) ◽  
pp. 543-550 ◽  
Author(s):  
Luiza Esteves ◽  
Mônica M.A.M. Schvartzman ◽  
Wagner Reis da Costa Campos ◽  
Vanessa F.C. Lins

Specimens of lean duplex and duplex stainless steel were exposed at 200°C in industrial white liquor from a Brazilian kraft mill using an autoclave to simulate the same conditions of digester processing. Tafel extrapolation method and weight loss were used to evaluate corrosion behavior of duplex steel in white liquor. The higher alloy steel, although presenting a lower corrosion rate than the lean duplex, presents a more severe selective attack on ferrite, at 200°C and 1.8 MPa, after Tafel extrapolation method in industrial white liquor.


Sign in / Sign up

Export Citation Format

Share Document