ChemInform Abstract: X-RAY CRYSTAL STRUCTURES OF THE DIPHENYLPHOSPHIDE AND ARSENIDE ANIONS: USE OF A CROWN ETHER TO EFFECT COMPLETE METAL CATION AND ORGANOMETALLOID ANION SEPARATION

1984 ◽  
Vol 15 (19) ◽  
Author(s):  
H. HOPE ◽  
M. M. OLMSTEAD ◽  
P. P. POWER ◽  
X. XU
2004 ◽  
Vol 68 (1) ◽  
pp. 147-165 ◽  
Author(s):  
U. Kolitsch

AbstractThe previously unknown, complex crystal structures of two fibrous ferric iron phosphate minerals have been solved using single-crystal X-ray diffraction data. The structure of a slightly arsenatian kidwellite has been refined in space group P2/c (a = 20.117(4), b = 5.185(1), c = 13.978(3)Å, β = 107.07(3)°, V = 1393.8(5)Å3, Z = 2) to R1 = 5.21%; a revision of both space group symmetry and chemical formula is proposed. The idealized formula is Na(Fe3+,M)9+x(OH)11(H2O)3(PO4)6, where M = Fe3+, Cu2+ or other metal cation, and x ≈ 0.3. The structure of a slightly arsenatian ‘laubmannite’ (as defined by Moore, 1970) has been refined in space group Pbcm (a = 5.172(1), b = 13.999(3), c = 31.083(6)Å, V = 2250.5(8)Å3, Z = 4) to R1 = 3.14%. The revised, idealized formula is (Fe3+,Fe2+,M)8+x(OH,H2O)9(-H2O)2(PO4)5, where M = Fe3+, Cu2+ or other metal cation, and x ≈ 0.1. The framework structures of both minerals are similar. Dominant building units are dimers composed of face- and edge-sharing FeO6 octahedra. Whereas kidwellite contains an additional trimer built of three corner-sharing FeO6 octahedra, ‘laubmannite’ instead contains a dimer built of two corner-sharing FeO6 octahedra. Kidwellite contains only trivalent iron, while one of the Fe sites in ‘laubmannite’ is occupied by a mixture of Fe3+ and Fe2+ in a 1:1 ratio. In both structures, the FeO6-based building units are linked via corners to PO4 tetrahedra; the M sites are located in narrow channels and have very low occupancies (~2 to 7%) and strongly distorted [6]- or [5+1]-coordinations. Close structural relations between kidwellite and ‘laubmannite’, and other fibrous iron phosphates explain observations of epitaxial intergrowths of them.


1986 ◽  
Vol 64 (4) ◽  
pp. 816-823 ◽  
Author(s):  
Marie E. Fraser ◽  
Suzanne Fortier ◽  
André Rodrigue ◽  
John W. Bovenkamp

The crystal structures of the 1:2 host:guest complexes of dicyclohexano-18-crown-6 (isomer B) with potassium phenoxide and dicyclohexano-18-crown-6 (isomer A) with sodium phenoxide have been determined. The potassium phenoxide complex crystallizes in space group [Formula: see text] with a = 10.023(2), b = 11.238(2), c = 7.546(2) Å, α = 95.73(2), β = 103.04(2), γ = 92.03(2)°, and Z = 1. The sodium phenoxide complex crystallizes in space group P21/n with a = 19.185(12), b = 13.266(5), c = 13.038(5) Å, β = 96.55(4)°, and Z = 4. Both structures were solved by direct methods and refined by full matrix least-squares calculations to a residual, R, of 0.035. The host conformation as well as the metal cation coordination differ considerably in the two structures. In the potassium phenoxide complex, the two cations are related by symmetry and have, consequently, the same chemical environment. Each potassium is located approximately halfway between the plane formed by the crown ether oxygens and the phenoxide anions and is coordinated to four of the crown oxygens and to two phenoxide oxygens. The oxygens of the crown are found to outline an elliptical cavity and to lie approximately in a plane. In the sodium phenoxide complex, the two sodiums have different crystallographic and chemical environments. One sodium is coordinated to the six hexaether oxygens, with distances ranging from 2.36to2.84 Å, and to one of the phenoxide oxygens. The other sodium is coordinated to only one of the crown oxygens and to three of the phenoxide oxygens. The hexaether adopts a highly irregular conformation.


2009 ◽  
Vol 64 (8) ◽  
pp. 985-988 ◽  
Author(s):  
Jian-Qiang Wang ◽  
Thomas F. Fässler

The cobalt complex [{K(18-crown-6)}2(C5H5)]- [Co(C8H12)2]・(THF)2 (3) has been synthesized and characterized by X-ray single-crystal structure determination. The crystal structure of Co(C8H12)(C8H13) (2) has been reinvestigated and compared with the structure of 3. The 1,5-cyclooctadiene (C8H12) and C8H13 ligands are coordinated in an η4 and η3 fashion, respectively. The cyclopentadienyl anion in [{K(18-crown-6)}2(C5H5)]+ in 3 is η5-coordinated to the two crown ether-encapsulated potassium cations


1990 ◽  
Vol 45 (7) ◽  
pp. 995-999 ◽  
Author(s):  
Karin Ruhlandt-Senge ◽  
Ulrich Müller

The title compounds were obtained from NiS + PPh4Cl + HCl in dichloromethane, from NiCl2 and PPh4Cl and from NiCl2 + Na2S + 15-crown-5 in acetonitrile or CH2Cl2, respectively. Their crystal structures were determined by X-ray diffraction. (PPh4)2[NiCl4]: monoclinic, space group C 2/c, Z = 4, a = 1094.9(3), b = 1946.1(4), c = 2033.5(5) pm, β = 91.48(3)°; R = 0.07 for 2895 unique observed reflexions. [Na-15-crown-5]2[NiCl4]: triclinic, space group P1̄, Z = 2, a = 987.6(1), b = 998.0(1), c = 1779.9(2) pm, α = 104.17(1), β = 95.43(1), γ = 109.95(1)°; R = 0.090 for 4155 unique observed reflexions. In both cases, the [NiCl4]2- ions have distorted tetrahedral structures. With PPh4+ as the cation the distortion corresponds to a twisted tetrahedron which fulfils the point symmetry D2, the deviation from a flattened D2d-tetrahedron being small. In (PPh4)2[NiCl4] cations and anions alternate in layers parallel to (001). In [Na-15-crown-5]2[NiCl4] two of the Cl atoms of the anion are coordinated to sodium ions; one of the crown ether molecules shows positional disorder.


1984 ◽  
Vol 23 (12) ◽  
pp. 977-979 ◽  
Author(s):  
Billy L. Allwood ◽  
John Crosby ◽  
David A. Pears ◽  
J. Fraser Stoddart ◽  
David J. Williams

1999 ◽  
Vol 54 (9) ◽  
pp. 1129-1132 ◽  
Author(s):  
Julia A. Rusanova ◽  
Philip J. Squattrito ◽  
Vera V. Ponomareva ◽  
Konstantin V. Domasevitch ◽  
Volodimir N. Kokozay

The new macrocyclic dicyanoargentate complex Cs(dibenzo-24-crown-8)[Ag(CN)2] has been prepared and studied by means of X-ray diffraction (monoclinic, space group P21/a, with a = 12.730(3), b = 15.443(3), c = 15.323(3) Å, V = 3005(1) Å3, Z = 4, R1 = 0.041; wR2 = 0.048 for 5488 unique reflections with I > 3σ(I)). The lattice consists of complex Cs(db- 24-crown-8)+ cations (as an example of the “wrap-around” structure) and [Ag(CN)2]- anions forming a one-dimensional polymeric structure. The caesium atoms are coordinated with 8 oxygen atoms of the macrocycle and two nitrogen atoms of the dicyanoargentate groups, bonding to the cation on both sides of the crown-ether. It is the first structure of a dibenzo-24-crown-8 complex with a large metal cation such as Cs+.


1991 ◽  
Vol 69 (4) ◽  
pp. 687-695 ◽  
Author(s):  
Kimberly A. Watson ◽  
Suzanne Fortier ◽  
Michael P. Murchie ◽  
John W. Bovenkamp

The crystal structures of three crown ether complexes (cyclohexano-15•crown-5•2LiOPh (1): Li2O7C26H36, Mr = 474.45, λ(CuKα)filt. = 1.5418 Å; cyclohexano-15-crown-5•2NaOPh (2): Na2O7C26H36, Mr = 504.54, λ(CuKα)filt. = 1.5418 Å; and 15-crown-5•2NaOPh (3): Na2O7C22H30, Mr = 452.46, λ(CuKα)mono. = 1.5418 Å) have been determined by X-ray diffraction at room temperature (T = 298 K). Complex 1 crystallizes in space group P21/n with a = 15.032(5), b = 13.332(2), c = 13.533(3) Å, β = 106.28(2)°, V = 2603.2 Å3, and Z = 4. Complex 2 crystallizes in space group P21/n with a = 15.94(1), b = 12.194(7), c = 14.068(7) Å, β = 102.84(5)°, V = 2666.3 Å3, and Z = 4. Complex 3 crystallizes in space group P21/c with a = 12.451(3), b = 17.263(3), c = 12.659(6) Å, β = 115.74(3)°, V = 2450.8 Å3, and Z = 4. The three structures were solved by direct methods and refined by full-matrix least-squares calculations to residuals, R, of 0.080, 0.069, and 0.081 for complexes 1, 2, and 3, respectively. In each structure the macrocycle forms a 1:2 host–guest complex with the alkali metal. Each structure exhibits a dimer of the general form (MAC•2MOPh)2 where M = Li+ and Na+ for structures 1 and 2, respectively, and MAC = cyclohexano-15-crown-5, while M = Na+ and MAC = 15-crown-5 for structure 3. In each case the two metals of the monomeric unit have different crystallographic and chemical environments. In structures 1 and 3 one alkali metal is coordinated to all five oxygens of the macrocycle and to one of the phenoxide oxygens, while the other alkali metal is coordinated to only one oxygen of the macrocycle and to three phenoxide oxygens. In structure 2, one alkali metal is coordinated to only four of the five oxygens of the macrocycle and to two of the phenoxide oxygens, while the other alkali metal is coordinated to only one oxygen of the macrocycle and to three phenoxide oxygens (as in 1 and 3). Key words: crown ether, host–guest complexes, X-ray crystallography.


Sign in / Sign up

Export Citation Format

Share Document