ChemInform Abstract: EXISTENCE OF BINARY COMPOUNDS OF CALCIUM TETRAHYDROALUMINATE WITH LITHIUM TETRAHYDROALUMINATE AND -BORATE

1984 ◽  
Vol 15 (48) ◽  
Author(s):  
B. M. BULYCHEV ◽  
A. V. GOLUBEVA ◽  
P. A. STOROZHENKO
2020 ◽  
Author(s):  
Cameron Hargreaves ◽  
Matthew Dyer ◽  
Michael Gaultois ◽  
Vitaliy Kurlin ◽  
Matthew J Rosseinsky

It is a core problem in any field to reliably tell how close two objects are to being the same, and once this relation has been established we can use this information to precisely quantify potential relationships, both analytically and with machine learning (ML). For inorganic solids, the chemical composition is a fundamental descriptor, which can be represented by assigning the ratio of each element in the material to a vector. These vectors are a convenient mathematical data structure for measuring similarity, but unfortunately, the standard metric (the Euclidean distance) gives little to no variance in the resultant distances between chemically dissimilar compositions. We present the Earth Mover’s Distance (EMD) for inorganic compositions, a well-defined metric which enables the measure of chemical similarity in an explainable fashion. We compute the EMD between two compositions from the ratio of each of the elements and the absolute distance between the elements on the modified Pettifor scale. This simple metric shows clear strength at distinguishing compounds and is efficient to compute in practice. The resultant distances have greater alignment with chemical understanding than the Euclidean distance, which is demonstrated on the binary compositions of the Inorganic Crystal Structure Database (ICSD). The EMD is a reliable numeric measure of chemical similarity that can be incorporated into automated workflows for a range of ML techniques. We have found that with no supervision the use of this metric gives a distinct partitioning of binary compounds into clear trends and families of chemical property, with future applications for nearest neighbor search queries in chemical database retrieval systems and supervised ML techniques.


2004 ◽  
Vol 383 (1-2) ◽  
pp. 189-194 ◽  
Author(s):  
K. Kanaya ◽  
S. Abe ◽  
H. Yoshida ◽  
K. Kamigaki ◽  
T. Kaneko

2019 ◽  
Vol 116 (39) ◽  
pp. 19324-19329 ◽  
Author(s):  
Rajkrishna Dutta ◽  
Eran Greenberg ◽  
Vitali B. Prakapenka ◽  
Thomas S. Duffy

Neighborite, NaMgF3, is used as a model system for understanding phase transitions in ABX3 systems (e.g., MgSiO3) at high pressures. Here we report diamond anvil cell experiments that identify the following phases in NaMgF3 with compression to 162 GPa: NaMgF3 (perovskite) → NaMgF3 (post-perovskite) → NaMgF3 (Sb2S3-type) → NaF (B2-type) + NaMg2F5 (P21/c) → NaF (B2) + MgF2 (cotunnite-type). Our results demonstrate the existence of an Sb2S3-type post-post-perovskite ABX3 phase. We also experimentally demonstrate the formation of the P21/c AB2X5 phase which has been proposed theoretically to be a common high-pressure phase in ABX3 systems. Our study provides an experimental observation of the full sequence of phase transitions from perovskite to post-perovskite to post-post-perovskite followed by 2-stage breakdown to binary compounds. Notably, a similar sequence of transitions is predicted to occur in MgSiO3 at ultrahigh pressures, where it has implications for the mineralogy and dynamics in the deep interior of large, rocky extrasolar planets.


1956 ◽  
Vol 11 (11) ◽  
pp. 920-934b
Author(s):  
Konrad Schubert

In determining structures we use physical propositions in order to find a likely crystal structure. The same propositions are of value for the ordering of known structures into a natural system. The atomic radii form such a proposition. Another proposition is contained in the spatial correlation of electrons in the electron gas. The question is, whether this correlation is of influence on the crystal structure or not. To gain a first insight into this question, it is useful to know whether the crystal structures are physically compatible with a certain spatial correlation of electrons. Some qualitative rules are given to assess the physical possibility of a spatial correlation of electrons in a crystal structure. For the crystal structures of some chemical elements proposals for electron correlation are given. These proposals account for rationalities existing between some lattice constants, e. g. the axial ratios of the hexagonal close packed structures of Co and Zn. The proposals are also applicable to some binary compounds. With regard to these commensurabilities, it seems possible that the examination of the spatial correlation of electrons may lead to a better understanding of the crystal-chemical empiry.


Sign in / Sign up

Export Citation Format

Share Document