ChemInform Abstract: Zinc Sulfide/Gallium Phosphide Composites by Chemical Vapor Transport.

ChemInform ◽  
2010 ◽  
Vol 26 (46) ◽  
pp. no-no
Author(s):  
Y. HAN ◽  
M. AKINC
2019 ◽  
Vol 59 (9) ◽  
pp. 49-57
Author(s):  
Lyudmila Yu. Udoeva ◽  
◽  
Vladimir M. Chumarev ◽  

The demand for renewable energy sources, including solar, is increasing every year, stimulating researchers to develop innovative technological solutions for obtaining material for photovoltaic modules - solar silicon. The article discusses a new process for the vapor transport of silicon in the form of sulfide compounds, which can serve as the basis for a halogen-free technology for producing high-purity silicon for photovoltaic batteries. Considering the well-known properties of silicon di- and monosulfide, it is proposed to use zinc sulfide as a carrier reagent, the presence of which in the Si-ZnS system first provides silicon sulfidization with the formation of gaseous products Zn (g) and SiS (g), and then the reduction of monosulfide to elemental silicon. The possibility of a chemical vapor transport reaction of silicon with zinc sulfide at a temperature above 1000 °C and a Si/ZnS ratio of 1 was justified by the method of the thermodynamic simulation of interactions in the Si-ZnS system in the temperature range 500-1500 °C. Based on the obtained equilibrium models of the interaction of zinc sulfide with technical silicon (grade Kr 2), the separation coefficients of (α) silicon from impurity elements that affect the electrophysical properties of silicon, in particular, reduce the lifetime of excess charge carriers, are calculated. The selectivity of this transport reaction and the prospects for its use for refining metallurgical silicon are estimated. It has been shown that the use of the silicon transfer reaction of zinc sulfide, for example, at 1100 °C, can provide deep purification of silicon from Fe, Ca, Ti, V, Cr, Mn and Cu (α ~ 108-1012), as well as Mg and Al (α ~ 104-106). The process is less effective for removing P and B (α ~ 102) and is not applicable for alkali metals in the entire studied temperature range. It is theoretically possible to improve the refining indexes by lowering the reaction temperature, but the necessary sulfur concentration in the gas phase for the complete conversion of silicon to SiS (g) is achieved only above 1050-1100 oC due to thermal dissociation of ZnS.


2002 ◽  
Vol 719 ◽  
Author(s):  
K. Thonke ◽  
N. Kerwien ◽  
A. Wysmolek ◽  
M. Potemski ◽  
A. Waag ◽  
...  

AbstractWe investigate by photoluminescence (PL) nominally undoped, commercially available Zinc Oxide substrates (from Eagle Picher) grown by seeded chemical vapor transport technique in order to identify residual donors and acceptors. In low temperature PL spectra the dominant emission comes from the decay of bound exciton lines at around 3.36 eV. Zeeman measurements allow the identification of the two strongest lines and some weaker lines in-between as donorrelated. From the associated two-electron satellite lines binding energies of the major donors of 48 meV and 55 meV, respectively, can be deduced.


2021 ◽  
Vol 40 (1) ◽  
pp. 171-177
Author(s):  
Yue Wang ◽  
Ben Fu Long ◽  
Chun Yu Liu ◽  
Gao An Lin

Abstract Herein, the evolution of reduction process of ultrafine tungsten powder in industrial conditions was investigated. The transition process of morphology and composition was examined via SEM, XRD, and calcination experiments. The results show that the reduction sequence of WO2.9 was WO2.9 → WO2.72 → WO2 → W on the surface, but WO2.9 → WO2 → W inside the oxide particles. With the aid of chemical vapor transport of WO x (OH) y , surface morphology transformed into rod-like, star-shaped cracking, floret, irregularly fibrous structure, and finally, spherical tungsten particles.


Author(s):  
Liang Fang ◽  
Yanping Xie ◽  
Peiyin Guo ◽  
Jingpei Zhu ◽  
Shuhui Xiao ◽  
...  

Vertical NiPS3 nanosheets in situ grown on conducting nickel foam were fabricated by a facile one-step chemical vapor transport method and used as an efficient bifunctional catalyst for overall water splitting.


ChemInform ◽  
2005 ◽  
Vol 36 (44) ◽  
Author(s):  
Udo Steiner ◽  
Werner Reichelt

Sign in / Sign up

Export Citation Format

Share Document