ChemInform Abstract: Preparation and Characterization of a New 3-Dimensional Zirconium Hydrogen Phosphate, τ-Zr(HPO4)2. Determination of the Complete Crystal Structure Combining Synchrotron X-Ray Single-Crystal Diffraction and Neutron Powder Diffraction.

ChemInform ◽  
2010 ◽  
Vol 29 (24) ◽  
pp. no-no
Author(s):  
A. M. KROGH ANDERSEN ◽  
P. NORBY ◽  
J. C. HANSON ◽  
T. VOGT
2014 ◽  
Vol 70 (a1) ◽  
pp. C1560-C1560
Author(s):  
Fumiko Kimura ◽  
Wataru Oshima ◽  
Hiroko Matsumoto ◽  
Hidehiro Uekusa ◽  
Kazuaki Aburaya ◽  
...  

In pharmaceutical sciences, the crystal structure is of primary importance because it influences drug efficacy. Due to difficulties of growing a large single crystal suitable for the single crystal X-ray diffraction analysis, powder diffraction method is widely used. In powder method, two-dimensional diffraction information is projected onto one dimension, which impairs the accuracy of the resulting crystal structure. To overcome this problem, we recently proposed a novel method of fabricating a magnetically oriented microcrystal array (MOMA), a composite in which microcrystals are aligned three-dimensionally in a polymer matrix. The X-ray diffraction of the MOMA is equivalent to that of the corresponding large single crystal, enabling the determination of the crystal lattice parameters and crystal structure of the embedded microcrytals.[1-3] Because we make use of the diamagnetic anisotropy of crystal, those crystals that exhibit small magnetic anisotropy do not take sufficient three-dimensional alignment. However, even for these crystals that only align uniaxially, the determination of the crystal lattice parameters can be easily made compared with the determination by powder diffraction pattern. Once these parameters are determined, crystal structure can be determined by X-ray powder diffraction method. In this paper, we demonstrate possibility of the MOMA method to assist the structure analysis through X-ray powder and single crystal diffraction methods. We applied the MOMA method to various microcrystalline powders including L-alanine, 1,3,5-triphenyl benzene, and cellobiose. The obtained MOMAs exhibited well-resolved diffraction spots, and we succeeded in determination of the crystal lattice parameters and crystal structure analysis.


Author(s):  
Ludmila S. Ivashkevich ◽  
Alexander S. Lyakhov ◽  
Anatoly F. Selevich ◽  
Anatoly I. Lesnikovich

AbstractThe crystal structure of the gallium hydrogen phosphate hydrate, Ga


1972 ◽  
Vol 50 (8) ◽  
pp. 1134-1143 ◽  
Author(s):  
G. Kemper ◽  
Aafje Vos ◽  
H. M. Rietveld

The crystal structure of KIO3•HIO3 has been determined by three-dimensional single crystal X-ray diffraction and by neutron powder diffraction. The crystallographic data are a = 7.025(2), b = 8.206(2), c = 21.839(5) Å, β = 97.98(2)°, space group P21/c, Z = 8 units KIO3•HIO3. The residual [Formula: see text] was 0.048 for 7516 independent X-ray reflections measured on a three-circle diffractometer with Zr-filtered Mo radiation. The results of the present study show good qualitative agreement with the structure recently determined by Chan and Einstein (7). The HIO3 and [Formula: see text] groups are pyramidal, the I—O(H) bonds vary from 1.898 to 1.939(4) Å and the I—O bonds from 1.786 to 1.827(4) Å, these lengths are not corrected for the effects of thermal motion. Strong O—I … O interactions and electrostatic attractions between K+ and Oδ− give slabs of thickness [Formula: see text] The slabs are connected by hydrogen bonds of 2.710 and 2.694 Å.


Sign in / Sign up

Export Citation Format

Share Document