scholarly journals Magnetically Oriented Powder Crystal to Indexing and Structure Determination

2014 ◽  
Vol 70 (a1) ◽  
pp. C1560-C1560
Author(s):  
Fumiko Kimura ◽  
Wataru Oshima ◽  
Hiroko Matsumoto ◽  
Hidehiro Uekusa ◽  
Kazuaki Aburaya ◽  
...  

In pharmaceutical sciences, the crystal structure is of primary importance because it influences drug efficacy. Due to difficulties of growing a large single crystal suitable for the single crystal X-ray diffraction analysis, powder diffraction method is widely used. In powder method, two-dimensional diffraction information is projected onto one dimension, which impairs the accuracy of the resulting crystal structure. To overcome this problem, we recently proposed a novel method of fabricating a magnetically oriented microcrystal array (MOMA), a composite in which microcrystals are aligned three-dimensionally in a polymer matrix. The X-ray diffraction of the MOMA is equivalent to that of the corresponding large single crystal, enabling the determination of the crystal lattice parameters and crystal structure of the embedded microcrytals.[1-3] Because we make use of the diamagnetic anisotropy of crystal, those crystals that exhibit small magnetic anisotropy do not take sufficient three-dimensional alignment. However, even for these crystals that only align uniaxially, the determination of the crystal lattice parameters can be easily made compared with the determination by powder diffraction pattern. Once these parameters are determined, crystal structure can be determined by X-ray powder diffraction method. In this paper, we demonstrate possibility of the MOMA method to assist the structure analysis through X-ray powder and single crystal diffraction methods. We applied the MOMA method to various microcrystalline powders including L-alanine, 1,3,5-triphenyl benzene, and cellobiose. The obtained MOMAs exhibited well-resolved diffraction spots, and we succeeded in determination of the crystal lattice parameters and crystal structure analysis.

1991 ◽  
Vol 246 ◽  
Author(s):  
Yutaka Emura ◽  
Takuya Ohba ◽  
Kazuhiro Otsuka

AbstractCrystal structure of the ζ2' martensite in a Au-49.5at%Cd ally has been analyzed by the single crystal x-ray diffraction method. The crystal lattice was trigonal and the lattice constants were a:0.8095(3) and c=o.57940(6) nm. There were 18 atoms in a unit cell. The space group was P3, which was different from that previously determined by Vatanayon and Hehemann. The structure was refined by the full matrix least squares method to a final R factor of 7.8% and a weighted R factor of 4.1%.


Author(s):  
U. Schwarz ◽  
H. Hillebrecht ◽  
K. Syassen

AbstractWe have measured single crystal X-ray diffraction data of InS at ambient pressure and under hydrostatic pressures up to 4.3 GPa. The redetermination of the crystal structure at ambient conditions shows no major deviations from previous results. Determination of lattice parameters at various pressures confirms an extraordinary large compressibility for the


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


2017 ◽  
Vol 72 (12) ◽  
pp. 983-988 ◽  
Author(s):  
Martin K. Schmitt ◽  
Hubert Huppertz

Abstractβ-Y(BO2)3 was synthesized in a Walker-type multianvil module at 5.9 GPa/1000°C. The crystal structure has been elucidated through single-crystal X-ray diffraction. β-Y(BO2)3 crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a=15.886(2), b=7.3860(6), and c=12.2119(9) Å. Its crystal structure will be discussed in the context of the isotypic lanthanide borates β-Ln(BO2)3 (Ln=Nd, Sm, Gd–Lu).


IUCrData ◽  
2019 ◽  
Vol 4 (11) ◽  
Author(s):  
Artem V. Malin ◽  
Sergei I. Ivlev ◽  
Roman V. Ostvald ◽  
Florian Kraus

Single crystals of rubidium tetrafluoridobromate(III), RbBrF4, were grown by melting and recrystallizing RbBrF4 from its melt. This is the first determination of the crystal structure of RbBrF4 using single-crystal X-ray diffraction data. We confirmed that the structure contains square-planar [BrF4]− anions and rubidium cations that are coordinated by F atoms in a square-antiprismatic manner. The compound crystallizes in the KBrF4 structure type. Atomic coordinates and bond lengths and angles were determined with higher precision than in a previous report based on powder X-ray diffraction data [Ivlev et al. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598].


1999 ◽  
Vol 14 (3) ◽  
pp. 219-221 ◽  
Author(s):  
V. Venegas ◽  
A. Gómez ◽  
E. Reguera

The crystal structure of disilver(1+) pentacyanonitrosylferrate(2−) was studied by X-ray powder diffraction. IR and Mössbauer spectroscopies, thermogravimetric analysis and density measurements were also carried out. This compound is monoclinic, and its lattice parameters are: a=10.986(3) Å, b=6.4080(10) Å, c=7.4545(19) Å, α=δ=90°, β=102.54°(2).


1994 ◽  
Vol 9 (1) ◽  
pp. 56-62 ◽  
Author(s):  
C. G. Lindsay ◽  
C. J. Rawn ◽  
R. S. Roth

Single crystals and powder samples of Ba4ZnTi11O27 and Ba2ZnTi5O13 have been synthesized and studied using single-crystal X-ray precession photographs and X-ray powder diffraction. Unit cell dimensions were calculated from a least-squares refinement with a final maximum Δ2θ of 0.05°. Both phases were found to have monoclinic cells, space group C2/m. The refined lattice parameters for the Ba4ZnTi11O27 compound are a= 19.8687(8) Å, b=11.4674(5) Å, c=9.9184(4) Å, β= 109.223(4)°, and Z=4. The refined lattice parameters for the Ba2ZnTi5O13 compound are a= 15.2822(7) Å, b=3.8977(1) Å, c=9.1398(3) Å, β=98.769(4)°, and Z=2.


Author(s):  
A. E. Gunnæs ◽  
A. Olsen ◽  
P. T. Zagierski ◽  
B. Klewe ◽  
O. B. Karlsen ◽  
...  

AbstractThe crystal structure of


Sign in / Sign up

Export Citation Format

Share Document