ChemInform Abstract: SAR Studies of Diaryltriazoles Against Bacterial Two-Component Regulatory Systems and Their Antibacterial Activities.

ChemInform ◽  
2010 ◽  
Vol 29 (47) ◽  
pp. no-no
Author(s):  
Z. SUI ◽  
J. GUAN ◽  
D. J. HLASTA ◽  
M. J. MACIELAG ◽  
B. D. FOLENO ◽  
...  
1998 ◽  
Vol 8 (14) ◽  
pp. 1929-1934 ◽  
Author(s):  
Zhihua Sui ◽  
Jihua Guan ◽  
Dennis J. Hlasta ◽  
Mark J. Macielag ◽  
Barbara D. Foleno ◽  
...  

2019 ◽  
Vol 19 (7) ◽  
pp. 875-915 ◽  
Author(s):  
Amr M. Abdelmoniem ◽  
Magda F. Mohamed ◽  
Doaa M. Abdelmoniem ◽  
Said A.S. Ghozlan ◽  
Ismail A. Abdelhamid

In this review, the recent synthetic approaches of amino hexahydroquinolines and their spirocyclic structures were highlighted. The synthetic routes include, two-components, three-components or fourcomponents reactions. The two-component [3+3] atom combination reaction represents the simplest method. It involves Michael addition of the electron rich β-carbon of β-enaminones to the activated double bond of cinnamonitriles followed by cyclization to yield hexahydroquinoline compounds. The bioactivity profiles and SAR studies of these compounds were also reviewed with emphasis to the utility of these substances as antimicrobial, anticancer and antitubercular agents, as well as calcium channel modulators.


Author(s):  
Lucindo Cardoso de Pina ◽  
Fernanda Stephens Hermes da Silva ◽  
Teca Calcagno Galvão ◽  
Heidi Pauer ◽  
Rosana Barreto Rocha Ferreira ◽  
...  

Author(s):  
Robert B. Bourret ◽  
Emily N. Kennedy ◽  
Clay A. Foster ◽  
Victoria E. Sepúlveda ◽  
William E. Goldman

2005 ◽  
Vol 71 (10) ◽  
pp. 5794-5804 ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Olivia McAuliffe ◽  
Eric Altermann ◽  
Sonja Lick ◽  
W. Michael Russell ◽  
...  

ABSTRACT Two-component regulatory systems are one primary mechanism for environmental sensing and signal transduction. Annotation of the complete genome sequence of the probiotic bacterium Lactobacillus acidophilus NCFM revealed nine two-component regulatory systems. In this study, the histidine protein kinase of a two-component regulatory system (LBA1524HPK-LBA1525RR), similar to the acid-related system lisRK from Listeria monocytogenes (P. D. Cotter et al., J. Bacteriol. 181:6840-6843, 1999), was insertionally inactivated. A whole-genome microarray containing 97.4% of the annotated genes of L. acidophilus was used to compare genome-wide patterns of transcription at various pHs between the control and the histidine protein kinase mutant. The expression pattern of approximately 80 genes was affected by the LBA1524HPK mutation. Putative LBA1525RR target loci included two oligopeptide-transport systems present in the L. acidophilus genome, other components of the proteolytic system, and a LuxS homolog, suspected of participating in synthesis of the AI-2 signaling compound. The mutant exhibited lower tolerance to acid and ethanol in logarithmic-phase cells and poor acidification rates in milk. Supplementation of milk with Casamino Acids essentially restored the acid-producing ability of the mutant, providing additional evidence for a role of this two component system in regulating proteolytic activity in L. acidophilus.


2006 ◽  
Vol 189 (4) ◽  
pp. 1342-1350 ◽  
Author(s):  
Stuart J. McKessar ◽  
Regine Hakenbeck

ABSTRACT The two-component system TCS08 is one of the regulatory systems that is important for virulence of Streptococcus pneumoniae. In order to investigate the TCS08 regulon, we have analyzed transcription profiles of mutants derived from S. pneumoniae R6 by microarray analysis. Since deletion mutants are often without a significant phenotype, we constructed a mutation in the histidine kinase HK08, T133P, in analogy to the phosphatase mutation T230P in the H box of the S. pneumoniae CiaH kinase described recently (D. Zähner, K. Kaminski, M. van der Linden, T. Mascher, M. Merai, and R. Hakenbeck, J. Mol. Microbiol. Biotechnol. 4:211-216, 2002). In addition, a deletion mutation was constructed in rr08, encoding the cognate response regulator. The most heavily suppressed genes in the hk08 mutant were spr0276 to spr0282, encoding a putative cellobiose phosphoenolpyruvate sugar phosphotransferase system (PTS). Whereas the R6 Smr parent strain and the Δrr08 mutant readily grew on cellobiose, the hk08 mutant and selected mutants with deletions in the PTS cluster did not, strongly suggesting that TCS08 is involved in the catabolism of cellobiose. Homologues of the TCS08 system were found in closely related streptococci and other gram-positive cocci. However, the genes spr0276 to spr0282, encoding the putative cellobiose PTS, represent a genomic island in S. pneumoniae and homologues were found in Streptococcus gordonii only, suggesting that this system might contribute to the pathogenicity potential of the pneumococcus.


mSphere ◽  
2021 ◽  
Author(s):  
Robert B. Bourret ◽  
Clay A. Foster ◽  
William E. Goldman

Fungal two-component regulatory systems incorporate receiver domains into hybrid histidine kinases (HHKs) and response regulators. We constructed a nonredundant database of 670 fungal receiver domain sequences from 51 species sampled from nine fungal phyla.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 635
Author(s):  
Hidetada Hirakawa ◽  
Jun Kurushima ◽  
Yusuke Hashimoto ◽  
Haruyoshi Tomita

Bacteria adapt to changes in their environment using a mechanism known as the two-component regulatory system (TCS) (also called “two-component signal transduction system” or “two-component system”). It comprises a pair of at least two proteins, namely the sensor kinase and the response regulator. The former senses external stimuli while the latter alters the expression profile of bacterial genes for survival and adaptation. Although the first TCS was discovered and characterized in a non-pathogenic laboratory strain of Escherichia coli, it has been recognized that all bacteria, including pathogens, use this mechanism. Some TCSs are essential for cell growth and fitness, while others are associated with the induction of virulence and drug resistance/tolerance. Therefore, the TCS is proposed as a potential target for antimicrobial chemotherapy. This concept is based on the inhibition of bacterial growth with the substances acting like conventional antibiotics in some cases. Alternatively, TCS targeting may reduce the burden of bacterial virulence and drug resistance/tolerance, without causing cell death. Therefore, this approach may aid in the development of antimicrobial therapeutic strategies for refractory infections caused by multi-drug resistant (MDR) pathogens. Herein, we review the progress of TCS inhibitors based on natural and synthetic compounds.


Sign in / Sign up

Export Citation Format

Share Document