scholarly journals The Two-Component Regulatory System TCS08 Is Involved in Cellobiose Metabolism of Streptococcus pneumoniae R6

2006 ◽  
Vol 189 (4) ◽  
pp. 1342-1350 ◽  
Author(s):  
Stuart J. McKessar ◽  
Regine Hakenbeck

ABSTRACT The two-component system TCS08 is one of the regulatory systems that is important for virulence of Streptococcus pneumoniae. In order to investigate the TCS08 regulon, we have analyzed transcription profiles of mutants derived from S. pneumoniae R6 by microarray analysis. Since deletion mutants are often without a significant phenotype, we constructed a mutation in the histidine kinase HK08, T133P, in analogy to the phosphatase mutation T230P in the H box of the S. pneumoniae CiaH kinase described recently (D. Zähner, K. Kaminski, M. van der Linden, T. Mascher, M. Merai, and R. Hakenbeck, J. Mol. Microbiol. Biotechnol. 4:211-216, 2002). In addition, a deletion mutation was constructed in rr08, encoding the cognate response regulator. The most heavily suppressed genes in the hk08 mutant were spr0276 to spr0282, encoding a putative cellobiose phosphoenolpyruvate sugar phosphotransferase system (PTS). Whereas the R6 Smr parent strain and the Δrr08 mutant readily grew on cellobiose, the hk08 mutant and selected mutants with deletions in the PTS cluster did not, strongly suggesting that TCS08 is involved in the catabolism of cellobiose. Homologues of the TCS08 system were found in closely related streptococci and other gram-positive cocci. However, the genes spr0276 to spr0282, encoding the putative cellobiose PTS, represent a genomic island in S. pneumoniae and homologues were found in Streptococcus gordonii only, suggesting that this system might contribute to the pathogenicity potential of the pneumococcus.

Microbiology ◽  
2006 ◽  
Vol 152 (2) ◽  
pp. 323-331 ◽  
Author(s):  
Sébastien Guiral ◽  
Vincent Hénard ◽  
Chantal Granadel ◽  
Bernard Martin ◽  
Jean-Pierre Claverys

Natural competence for genetic transformation in Streptococcus pneumoniae is controlled by the ComCDE signal-transduction pathway. Together, ComD, a membrane histidine kinase, and ComE, its cognate response regulator, constitute a typical two-component regulatory system involved in sensing the comC-encoded competence-stimulating peptide (CSP). The comCDE operon is strongly upregulated when CSP reaches a critical threshold, probably to coordinate competence induction throughout the population. During a study of the early regulation of the comCDE operon, a mutation which resulted in increased β-galactosidase production from a comC : : lacZ fusion was isolated. This mutation, which was characterized as a G→T change in the transcription terminator of the tRNAArg located immediately upstream of comCDE, is suggested to destabilize the terminator and to allow transcriptional readthrough of comCDE. Here, it is shown that, quite unexpectedly, the mutation confers reduced transformability. A series of experiments undertaken with the aim of understanding this surprising phenotype is described. Evidence is presented that increased basal-level expression of comDE impedes both spontaneous and CSP-induced competence in S. pneumoniae. There is a discussion of how an increased concentration of ComD and/or ComE could affect competence development.


2009 ◽  
Vol 191 (8) ◽  
pp. 2656-2667 ◽  
Author(s):  
Stephanie N. Joslin ◽  
David R. Hendrixson

ABSTRACT Activation of σ54-dependent gene expression essential for formation of flagella in Campylobacter jejuni requires the components of the inner membrane-localized flagellar export apparatus and the FlgSR two-component regulatory system. In this study, we characterized the FlgS sensor kinase and how activation of the protein is linked to the flagellar export apparatus. We found that FlgS is localized to the C. jejuni cytoplasm and that His141 of FlgS is essential for autophosphorylation, phosphorelay to the cognate FlgR response regulator, motility, and expression of σ54-dependent flagellar genes. Mutants with incomplete flagellar export apparatuses produced wild-type levels of FlgS and FlgR, but they were defective for signaling through the FlgSR system. By using genetic approaches, we found that FlgSR activity is linked to and downstream of the flagellar export apparatus in a regulatory cascade that terminates in expression of σ54-dependent flagellar genes. By analyzing defined flhB and fliI mutants of C. jejuni that form flagellar export apparatuses that are secretion incompetent, we determined that formation of the apparatus is required to contribute to the signal sensed by FlgS to terminate in activation of expression of σ54-dependent flagellar genes. Considering that the flagellar export apparatuses of Escherichia coli and Salmonella species influence σ28-dependent flagellar gene expression, our work expands the signaling activity of the apparatuses to include σ54-dependent pathways of C. jejuni and possibly other motile bacteria. This study indicates that these apparatuses have broader functions beyond flagellar protein secretion, including activation of essential two-component regulatory systems required for expression of σ54-dependent flagellar genes.


2014 ◽  
Vol 197 (5) ◽  
pp. 861-871 ◽  
Author(s):  
Kumiko Kurabayashi ◽  
Yuko Hirakawa ◽  
Koichi Tanimoto ◽  
Haruyoshi Tomita ◽  
Hidetada Hirakawa

Particular interest in fosfomycin has resurfaced because it is a highly beneficial antibiotic for the treatment of refractory infectious diseases caused by pathogens that are resistant to other commonly used antibiotics. The biological cost to cells of resistance to fosfomycin because of chromosomal mutation is high. We previously found that a bacterial two-component system, CpxAR, induces fosfomycin tolerance in enterohemorrhagicEscherichia coli(EHEC) O157:H7. This mechanism does not rely on irreversible genetic modification and allows EHEC to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin. Here we show that another two-component system, TorSRT, which was originally characterized as a regulatory system for anaerobic respiration utilizing trimethylamine-N-oxide (TMAO), also induces fosfomycin tolerance. Activation of the Tor regulatory pathway by overexpression oftorR, which encodes the response regulator, or addition of TMAO increased fosfomycin tolerance in EHEC. We also show that phosphorylated TorR directly represses the expression ofglpT, a gene that encodes a symporter of fosfomycin and glycerol-3-phosphate, and activation of the TorR protein results in the reduced uptake of fosfomycin by cells. However, cells in which the Tor pathway was activated had an impaired growth phenotype when cultured with glycerol-3-phosphate as a carbon substrate. These observations suggest that the TorSRT pathway is the second two-component system to reversibly control fosfomycin tolerance and glycerol-3-phosphate uptake in EHEC, and this may be beneficial for bacteria by alleviating the biological cost. We expect that this mechanism could be a potential target to enhance the utility of fosfomycin as chemotherapy against multidrug-resistant pathogens.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 635
Author(s):  
Hidetada Hirakawa ◽  
Jun Kurushima ◽  
Yusuke Hashimoto ◽  
Haruyoshi Tomita

Bacteria adapt to changes in their environment using a mechanism known as the two-component regulatory system (TCS) (also called “two-component signal transduction system” or “two-component system”). It comprises a pair of at least two proteins, namely the sensor kinase and the response regulator. The former senses external stimuli while the latter alters the expression profile of bacterial genes for survival and adaptation. Although the first TCS was discovered and characterized in a non-pathogenic laboratory strain of Escherichia coli, it has been recognized that all bacteria, including pathogens, use this mechanism. Some TCSs are essential for cell growth and fitness, while others are associated with the induction of virulence and drug resistance/tolerance. Therefore, the TCS is proposed as a potential target for antimicrobial chemotherapy. This concept is based on the inhibition of bacterial growth with the substances acting like conventional antibiotics in some cases. Alternatively, TCS targeting may reduce the burden of bacterial virulence and drug resistance/tolerance, without causing cell death. Therefore, this approach may aid in the development of antimicrobial therapeutic strategies for refractory infections caused by multi-drug resistant (MDR) pathogens. Herein, we review the progress of TCS inhibitors based on natural and synthetic compounds.


2004 ◽  
Vol 186 (9) ◽  
pp. 2872-2879 ◽  
Author(s):  
Colin J. Bent ◽  
Neil W. Isaacs ◽  
Timothy J. Mitchell ◽  
Alan Riboldi-Tunnicliffe

ABSTRACT A variety of bacterial cellular responses to environmental signals are mediated by two-component signal transduction systems comprising a membrane-associated histidine protein kinase and a cytoplasmic response regulator (RR), which interpret specific stimuli and produce a measured physiological response. In RR activation, transient phosphorylation of a highly conserved aspartic acid residue drives the conformation changes needed for full activation of the protein. Sequence homology reveals that RR02 from Streptococcus pneumoniae belongs to the OmpR subfamily of RRs. The structures of the receiver domains from four members of this family, DrrB and DrrD from Thermotoga maritima, PhoB from Escherichia coli, and PhoP from Bacillus subtilis, have been elucidated. These domains are globally very similar in that they are composed of a doubly wound α5β5; however, they differ remarkably in the fine detail of the β4-α4 and α4 regions. The structures presented here reveal a further difference of the geometry in this region. RR02 is has been shown to be the essential RR in the gram-positive bacterium S. pneumoniae R. Lange, C. Wagner, A. de Saizieu, N. Flint, J. Molnos, M. Stieger, P. Caspers, M. Kamber, W. Keck, and K. E. Amrein, Gene 237:223-234, 1999; J. P. Throup, K. K. Koretke, A. P. Bryant, K. A. Ingraham, A. F. Chalker, Y. Ge, A. Marra, N. G. Wallis, J. R. Brown, D. J. Holmes, M. Rosenberg, and M. K. Burnham, Mol. Microbiol. 35:566-576, 2000). RR02 functions as part of a phosphotransfer system that ultimately controls the levels of competence within the bacteria. Here we report the native structure of the receiver domain of RR02 from serotype 4 S. pneumoniae (as well as acetate- and phosphate-bound forms) at different pH levels. Two native structures at 2.3 Å, phased by single-wavelength anomalous diffraction (xenon SAD), and 1.85 Å and a third structure at pH 5.9 revealed the presence of a phosphate ion outside the active site. The fourth structure revealed the presence of an acetate molecule in the active site.


2010 ◽  
Vol 192 (17) ◽  
pp. 4388-4394 ◽  
Author(s):  
Kyle J. Wayne ◽  
Lok-To Sham ◽  
Ho-Ching T. Tsui ◽  
Alina D. Gutu ◽  
Skye M. Barendt ◽  
...  

ABSTRACT The WalRK two-component regulatory system coordinates gene expression that maintains cell wall homeostasis and responds to antibiotic stress in low-GC Gram-positive bacteria. Phosphorylated WalR (VicR) of the major human respiratory pathogen Streptococcus pneumoniae (WalR Spn ) positively regulates transcription of several surface virulence genes and, most critically, pcsB, which encodes an essential cell division protein. Despite numerous studies of several species, little is known about the signals sensed by the WalK histidine kinase or the function of the WalJ ancillary protein encoded in the walRKSpn operon. To better understand the functions of the WalRKJ Spn proteins in S. pneumoniae, we performed experiments to determine their cellular localization and amounts. In contrast to WalK from Bacillus subtilis (WalK Bsu ), which is localized at division septa, immunofluorescence microscopy showed that WalK Spn is distributed throughout the cell periphery. WalJ Spn is also localized to the cell surface periphery, whereas WalR Spn was found to be localized in the cytoplasm around the nucleoid. In fractionation experiments, WalR Spn was recovered from the cytoplasmic fraction, while WalK Spn and the majority of WalJ Spn were recovered from the cell membrane fraction. This fractionation is consistent with the localization patterns observed. Lastly, we determined the cellular amounts of WalRKJ Spn by quantitative Western blotting. The WalR Spn response regulator is relatively abundant and present at levels of ≈6,200 monomers per cell, which are ≈14-fold greater than the amount of the WalK Spn histidine kinase, which is present at ≈460 dimers (920 monomers) per cell. We detected ≈1,200 monomers per cell of WalJ Spn ancillary protein, similar to the amount of WalK Spn .


2005 ◽  
Vol 187 (3) ◽  
pp. 1105-1113 ◽  
Author(s):  
Sheng-Mei Jiang ◽  
Michael J. Cieslewicz ◽  
Dennis L. Kasper ◽  
Michael R. Wessels

ABSTRACT Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS. We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type. Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Riana Cockeran ◽  
Jenny A. Herbert ◽  
Timothy J. Mitchell ◽  
Thérèse Dix-Peek ◽  
Caroline Dickens ◽  
...  

Alterations in whole genome expression profiles following exposure of the pneumococcus (strain 172, serotype 23F) to cigarette smoke condensate (160 μg/mL) for 15 and 60 min have been determined using the TIGR4 DNA microarray chip. Exposure to CSC resulted in the significant (P<0.014–0.0006) upregulation of the genes encoding the two-component regulatory system 11 (TCS11), consisting of the sensor kinase,hk11, and its cognate response regulator,rr11, in the setting of increased biofilm formation. These effects of cigarette smoke on the pneumococcus may contribute to colonization of the airways by this microbial pathogen.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Michiyah Collins ◽  
Simisola Afolayan ◽  
Aime B. Igiraneza ◽  
Heather Schiller ◽  
Elise Krespan ◽  
...  

Motility regulation plays a key role in prokaryotic responses to environmental stimuli. Here, we used a motility screen and selection to isolate hypermotile Haloferax volcanii mutants from a transposon insertion library. Whole genome sequencing revealed that hypermotile mutants were predominantly affected in two genes that encode HVO_1357 and HVO_2248. Alterations of these genes comprised not only transposon insertions but also secondary genome alterations. HVO_1357 contains a domain that was previously identified in the regulation of bacteriorhodopsin transcription, as well as other domains frequently found in two-component regulatory systems. The genes adjacent to hvo_1357 encode a sensor box histidine kinase and a response regulator, key players of a two-component regulatory system. None of the homologues of HVO_2248 have been characterized, nor does it contain any of the assigned InterPro domains. However, in a significant number of Haloferax species, the adjacent gene codes for a chemotaxis receptor/transducer. Our results provide a foundation for characterizing the root causes underlying Hfx. volcanii hypermotility.


2009 ◽  
Vol 191 (23) ◽  
pp. 7174-7181 ◽  
Author(s):  
Eunna Choi ◽  
Eduardo A. Groisman ◽  
Dongwoo Shin

ABSTRACT The PhoP/PhoQ two-component system controls several physiological and virulence functions in Salmonella enterica. This system is activated by low Mg2+, acidic pH, and antimicrobial peptides, but the biological consequences resulting from sensing multiple signals are presently unclear. Here, we report that the PhoP/PhoQ system regulates different Salmonella genes depending on whether the inducing signal is acidic pH or low Mg2+. When Salmonella experiences acidic pH, the PhoP/PhoQ system promotes Fe2+ uptake in a process that requires the response regulator RstA, activating transcription of the Fe2+ transporter gene feoB. In contrast, the PhoP-induced RstA protein did not promote feoB expression at neutral pH with low Mg2+. The PhoP/PhoQ system promotes the expression of the Mg2+ transporter mgtA gene only when activated in bacteria starved for Mg2+. This is because mgtA transcription promoted at high Mg2+ concentrations by the acidic-pH-activated PhoP protein failed to reach the mgtA coding region due to the mgtA leader region functioning as a Mg2+ sensor. Our results show that a single two-component regulatory system can regulate distinct sets of genes in response to different input signals.


Sign in / Sign up

Export Citation Format

Share Document