Decomposition of LiPF6 and Stability of PF5 in Li-Ion Battery Electrolytes. Density Functional Theory and Molecular Dynamics Studies.

ChemInform ◽  
2004 ◽  
Vol 35 (7) ◽  
Author(s):  
Ken Tasaki ◽  
Katsuya Kanda ◽  
Shinichiro Nakamura ◽  
Makoto Ue
2017 ◽  
Vol 19 (3) ◽  
pp. 2087-2094 ◽  
Author(s):  
Simon Loftager ◽  
Juan María García-Lastra ◽  
Tejs Vegge

Density functional theory modelling shows that carbon coatings on a LiFeBO3 cathode material does not impede the Li transport in a Li-ion battery.


Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


Author(s):  
Alberto Rodríguez-Fernández ◽  
Laurent Bonnet ◽  
Pascal Larrégaray ◽  
Ricardo Díez Muiño

The dissociation process of hydrogen molecules on W(110) was studied using density functional theory and classical molecular dynamics.


1995 ◽  
Vol 383 ◽  
Author(s):  
G. Jungnickel ◽  
D. Porezag ◽  
Th. Frauenheim ◽  
W. R. L. Lambrecht ◽  
B. Segall ◽  
...  

ABSTRACTThe reconstruction of the diamond {1111} surface is re-examined by means of density functional theory based tight-binding molecular dynamics. Evidence is found for competition between a graphitizing tendency leading to an unreconstructed but relaxed 1 × 1 surface and a π-bonded chain-like 2 × 1 reconstruction. The implications of the possible co-existence of these two distinct surface phases for diamond growth are discussed.


Sign in / Sign up

Export Citation Format

Share Document