ChemInform Abstract: Transition Metals in Organic Synthesis. Part 89. Synthesis of Biologically Active Carbazole Alkaloids Using Selective Transition-Metal-Catalyzed Coupling Reactions

ChemInform ◽  
2009 ◽  
Vol 40 (17) ◽  
Author(s):  
Hans-Joachim Knoelker
Synthesis ◽  
2020 ◽  
Author(s):  
Zoltán Hell ◽  
Kinga Juhász ◽  
Ágnes Magyar

AbstractTransition-metal-catalyzed cross-coupling of organo­halides, ethers, sulfides, amines, and alcohols (and derivatives thereof) with Grignard reagents, known as the Kumada–Tamao–Corriu reaction, can be used to prepare important intermediates in the synthesis of numerous­ biologically active compounds. The most frequently used transition metals are nickel, palladium, and iron, but there are several examples for cross-coupling reactions catalyzed by copper, cobalt, manganese, chromium, etc. salts and complexes. The aim of this review is to summarize the most important transition-metal-catalyzed cross-coupling reactions realized in the period 2000 to 2020.1 Introduction2 Nickel Catalysis3 Palladium Catalysis4 Iron Catalysis5 Catalysis by Other Transition Metals5.1 Cobalt Catalysis5.2 Copper Catalysis5.3 Manganese Catalysis5.4 Chromium Catalysis6 Conclusion


2018 ◽  
Vol 15 (6) ◽  
pp. 762-780
Author(s):  
Katrina Tait ◽  
William Tam

Background: Transition metal catalysts are becoming increasingly more important in organic synthesis and are being used to catalyze novel reactions that allow for more efficient synthesis of many pharmaceuticals. Transition metal-catalyzed reactions of 3-aza-2-oxabicyco[2.2.1]hept-5-enes provide efficient synthetic pathways to generate a diverse range of biologically and synthetically useful products. 3-Aza-2- oxabicyclic alkenes undergo three main types of reactions: reductive N-O bond cleavage, C-O bond cleavage, and modification of the alkene component. Objective: The purpose of this review is to summarize and discuss the transition metal-mediated reactions of 3- aza-2-oxabicyclo[2.2.1]hept-5-enes, including the mechanisms of reactions based on the transition metal used, the different stereo- and regiochemical outcomes of reactions with this asymmetrical substrate, and the biological importance of exploring these reactions. Conclusion: It is clear from the review of the topic that a vast amount of work has been done in this area, and transition metals have been used to control the regio- and stereoselective reactions of 3-aza-2-oxabicyclic alkenes to create biologically active and synthetically useful products. The transition metal-catalyzed reactions of 3-aza-2-oxabicyclic alkenes proceed through three general reactions: through cleavage of the N-O bond, cleavage of the C-O bond, and modification of the alkene component. Without the use of transition metals, the substrate would not be activated and these reactions would not be possible. The use of transition metals opens up an array of new reactions that have the ability to create different functional groups with different regio- and stereoselectivities based on the metal and conditions used. The products made through these transition metalcatalyzed reactions can be useful as antibiotics, siderophores, and carbocyclic nucleosides such as noraristeromycin and carbocyclic polyoxin C.


2019 ◽  
Vol 15 ◽  
pp. 1612-1704 ◽  
Author(s):  
Gagandeep Kour Reen ◽  
Ashok Kumar ◽  
Pratibha Sharma

A comprehensive account of recent advances in the synthesis of imidazopyridines, assisted through transition-metal-catalyzed multicomponent reactions, C–H activation/functionalization and coupling reactions are highlighted in this review article. The basic illustration of this review comprises of schemes with concise account of explanatory text. The schemes depict the reaction conditions along with a quick look into the mechanism involved to render a deep understanding of the catalytic role. At some instances optimizations of certain features have been illustrated through tables, i.e., selectivity of catalyst, loading of the catalyst and percentage yield with different substrates. Each of the reported examples has been rigorously analyzed for reacting substrates, reaction conditions and transition metals used as the catalyst. This review will be helpful to the chemists in understanding the challenges associated with the reported methods as well as the future possibilities, both in the choice of substrates and catalysts. This review would be quite appealing to a wider range of organic chemists in academia and industrial R&D sectors working in the field of heterocyclic syntheses. In a nutshell, this review will be a guiding torch to envisage: (i) the role of various transition metals in the domain dedicated towards method development and (ii) for the modifications needed thereof in the R&D sector.


2021 ◽  
Vol 08 ◽  
Author(s):  
Lalit Yadav ◽  
Sandeep Chaudhary

: The formation of new bonds through C-C bond formation is of utmost importance in the synthesis of biologically privileged scaffolds and therapeutic drugs. In recent years, extensive efforts has been done to improve the intermolecular and intramolecular cross-coupling reaction in the simple, mild, efficient, economical, and eco-friendly manner via transition metal-free or organocatalytic direct C-H bond activation methodology. The traditional crosscoupling era continuously shifted to metal-free, organocatalytic, or metal-free cross-dehydrogenative coupling strategies to fast-track the reactions and diminishing the typical purification processes. Therefore, recent advances on the transitionmetal-free, organocatalytic inter- and intra-molecular cross-coupling reactions have been introduced and discussed in the present article. In view of the reaction mechanism, organocatalytic cross-coupling reactions undergo through the radical pathways, radical anionic intermediate which is completely different from traditional transition metal-catalyzed reactions. The exploration of transition metal-free organocatalyzed cross-couplings for direct C-H arylation of arenes has grown significantly, thereby, improving the formation of a wide range of aryl-aryl /aryl-heteroaryl/ heteroaryl-heteroaryl compounds. In the survey, transition metal-free/organocatalytic cross-coupling reactions showed a higher efficiency under simple and mild conditions than the comparative transition metal-catalyzed cross-coupling reactions. However, the higher regioselectivity and chemoselectivity are still far ahead in organocatalytic cross-coupling reactions due to their specific intrinsic mechanistic pathway. The tuning of many parameters such as oxidative states, ligands coordination, and counter anions, etc., which results in the specific direct C-H functionalization with flexible methodology are missing in the transition metal-free cross-coupling reactions. The highly systematic transition metal-catalyzed chemistry is still playing a dominant role over transition metal-free chemistry in organic synthesis. The organocatalyzed transition-metal-free conditions should be more efficient, chemoselective, and regioselective for further potential development and applications in organic synthesis. For the endless pursuit of sustainable chemistry and green chemistry, such transition-metalfree/organocatalytic reactions should be never ceased. Additional curious attention and interest have been developed so far, and chemists are showing their eagerness and talents to uncover the hidden treasure of green chemistry. In this review article, we highlighted the developments of various transition metal-free/organocatalytic C-H bond activation reactions which further encourages the advancement in the development of sustainable C-C coupling reactions and their further applications towards the synthesis of biologically privileged scaffolds and drug molecules.


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


2018 ◽  
Vol 15 (7) ◽  
pp. 940-971 ◽  
Author(s):  
Navjeet Kaur

Background: Due to significant biological activity associated with N-, O- and S-heterocycles, a number of reports for their synthesis have appeared in recent decades. Traditional approaches require expensive or highly specialized equipment or would be of limited use to the synthetic organic chemist due to their highly inconvenient approaches. This review summarizes the applications of copper catalysts with the emphasis on their synthetic applications for nitrogen bearing polyheterocylces. In summary, this review article describes the synthesis of a number of five-membered poly heterocyclic rings. Objective: Nowadays new approaches that employ atom-economical and efficient pathway have been developed. The researchers are following natural models to design and synthesize heterocycles. The transition metal catalyzed protocols have attracted the attention as compared to other synthetic methodologies because they use easily available substrates to build multiple substituted complicated molecules directly under mild conditions. In organic synthesis, constituted by transition metal catalyzed coupling transformations are one of the most powerful and useful protocols. The N-heterocycles are synthesized by this convenient and useful tool. Conclusion: The efficient and chemoselective synthesis of heterocycles by this technique has appeared as an important tool. This review shows a highly dynamic research field and the employment of copper catalysts in organic synthesis. Several strategies have been pointed out in the past few years, to meet more sustainable, efficient and environmentally benign chemical products and procedures. The catalytic strategies have been the focus of intense research because they avoid the use of toxic reagents. Among these catalytic strategies, highly rewarding and an important method in heterocycles synthesis is metal catalyzed synthesis.


RSC Advances ◽  
2021 ◽  
Vol 11 (13) ◽  
pp. 7146-7179
Author(s):  
P. V. Saranya ◽  
Mohan Neetha ◽  
Thaipparambil Aneeja ◽  
Gopinathan Anilkumar

Spirooxindoles are used as anticancer-, antiviral-, antimicrobial agents etc. The use of transition metals as catalysts for the synthesis of spirooxindoles is advancing rapidly. Here, we focus on recent advances in transition metal-catalyzed synthesis of spirooxindoles.


Sign in / Sign up

Export Citation Format

Share Document