ChemInform Abstract: Secondary Building Units, Nets and Bonding in the Chemistry of Metal-Organic Frameworks

ChemInform ◽  
2009 ◽  
Vol 40 (29) ◽  
Author(s):  
David J. Tranchemontagne ◽  
Jose L. Mendoza-Cortes ◽  
Michael O'Keeffe ◽  
Omar M. Yaghi
2021 ◽  
Author(s):  
Xinyao Liu ◽  
Yunling Liu

ZMOFs are a subset of MOFs that exhibit zeolite-like topologies. Using molecular building block strategy, many ZMOFs with high stability and excellent performance can be rationally designed and synthesized using different secondary building units.


2019 ◽  
Vol 58 (23) ◽  
pp. 7818-7822 ◽  
Author(s):  
Chengdong Peng ◽  
Xueling Song ◽  
Jinlin Yin ◽  
Guiyang Zhang ◽  
Honghan Fei

2020 ◽  
Vol 8 (4) ◽  
pp. 1374-1379 ◽  
Author(s):  
Yutong Wang ◽  
Kai Zhang ◽  
Xiaokang Wang ◽  
Xuelian Xin ◽  
Xiurong Zhang ◽  
...  

An unprecedented three-dimensional (3D) (3,4,5)-czkf topological framework (UPC-38) with one-dimensional (1D) chain secondary building units exhibits strong white light emission.


2019 ◽  
Vol 1 (4) ◽  
pp. 476-480 ◽  
Author(s):  
Shinya Moribe ◽  
Zhijie Chen ◽  
Selim Alayoglu ◽  
Zoha H. Syed ◽  
Timur Islamoglu ◽  
...  

2019 ◽  
Vol 1197 ◽  
pp. 87-95 ◽  
Author(s):  
Lili Fan ◽  
Xiaobin Liu ◽  
Liangliang Zhang ◽  
Xia Kong ◽  
Zhenyu Xiao ◽  
...  

2006 ◽  
Vol 62 (5) ◽  
pp. 808-814 ◽  
Author(s):  
Samuel M. Hawxwell ◽  
Harry Adams ◽  
Lee Brammer

The solvothermal synthesis of four two-dimensional metal-organic frameworks containing linear dicarboxylic acids as ligands for ZnII centres is described. Zn(BDC)(DMF) [(1) where BDC = benzene-1,4-dicarboxylic acid; DMF = N,N-dimethylformamide] adopts a common paddlewheel motif leading to a 44 grid network, whereas Zn3(BDC)3(EtOH)2 (2), Zn3(BDC)3(H2O)2·4DMF (3) and Zn3(BPDC)3(DMF)2·4DMF (4) each form networks with the relatively uncommon 36 topology based upon Zn3(O2CR)6 secondary building units. All contain coordinated solvent molecules, namely DMF [(1) and (4)], ethanol (2) or H2O (3). Comparison of structures (2) and (3) illustrates a clay-like flexibility in interplanar spacing which sheds light on the ability of the Zn3(BDC)3 framework to undergo desolvation and uptake of small solvent and gas molecules.


Author(s):  
Feijie Song ◽  
Teng Zhang ◽  
Cheng Wang ◽  
Wenbin Lin

Metal-organic frameworks (MOFs) are a class of organic–inorganic hybrid materials built from metal-connecting nodes and organic-bridging ligands. They have received much attention in recent years owing to the ability to tune their properties for potential applications in various areas. Properly designed MOFs with uniform, periodically aligned active sites have shown great promise in catalysing shape-, size-, chemo-, regio- and stereo-selective organic transformations. This study reports the synthesis and characterization of two chiral MOFs (CMOFs 1 and 2 ) that are constructed from Mn-salen-derived dicarboxylic acids [salen is ( R , R )- N , N ′-bis(5- tert -butylsalicylidene)-1,2-cyclohexanediamine], bis(4-vinylbenzoic acid)-salen manganese(III) chloride (H 2 L 4 ) or bis(benzoic acid)-salen manganese(III) chloride (H 2 L 3 ) and [Zn 4 (μ 4 -O)(O 2 CR) 6 ] or [Zn 5 (H 2 O) 2 (μ 3 -OH) 2 (O 2 CR) 8 ] secondary building units (SBUs), respectively. The SBUs in CMOF- 1 are connected by the linear ditopic Mn-salen-derived linkers to construct a fourfold interpenetrated isoreticular MOF (IRMOF) structure with pcu topology. In CMOF- 2 , the Mn-salen centres dimerize in a cross-linking way to form a diamondoid structure with threefold interpenetration. CMOF- 1 was examined for highly regio- and stereo-selective tandem alkene epoxidation/epoxide ring-opening reactions by using the Mn-salen andZn 4 (μ 4 -O)(carboxylate) 6 active sites, respectively. Our work demonstrated the potential utility of chiral MOFs with multiple active sites in the efficient synthesis of complex molecules with excellent regio- and stereo-controls


Polyhedron ◽  
2011 ◽  
Vol 30 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Anjian Lan ◽  
Lian Chen ◽  
Daqiang Yuan ◽  
Yougui Huang ◽  
Maochun Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document