ChemInform Abstract: Directed Arylation of Heteroaromatic Compounds with Congested, Functionalized Aryl Bromides at Low Palladium/Triphosphane Catalyst Loading.

ChemInform ◽  
2011 ◽  
Vol 42 (39) ◽  
pp. no-no
Author(s):  
David Roy ◽  
Sophal Mom ◽  
Dominique Lucas ◽  
Helene Cattey ◽  
Jean-Cyrille Hierso ◽  
...  
2011 ◽  
Vol 17 (23) ◽  
pp. 6453-6461 ◽  
Author(s):  
David Roy ◽  
Sophal Mom ◽  
Dominique Lucas ◽  
Hélène Cattey ◽  
Jean‐Cyrille Hierso ◽  
...  

2015 ◽  
Vol 11 ◽  
pp. 2012-2020 ◽  
Author(s):  
Fatiha Abdelmalek ◽  
Fazia Derridj ◽  
Safia Djebbar ◽  
Jean-François Soulé ◽  
Henri Doucet

We report herein a two or three step synthesis of fluorinated π-conjugated oligomers through iterative C–H bond arylations. Palladium-catalyzed desulfitative arylation of heteroarenes allowed in a first step the synthesis of fluoroaryl-heteroarene units in high yields. Then, the next steps involve direct arylation with aryl bromides catalyzed by PdCl(C3H5)(dppb) to afford triad or tetrad heteroaromatic compounds via regioselective activation of C(sp2)–H bonds.


2017 ◽  
Vol 13 ◽  
pp. 1717-1727 ◽  
Author(s):  
Carolina S García ◽  
Paula M Uberman ◽  
Sandra E Martín

Aqueous Mizoroki–Heck coupling reactions under microwave irradiation (MW) were carried out with a colloidal Pd nanocatalyst stabilized with poly(N-vinylpyrrolidone) (PVP). Many stilbenes and novel heterostilbenes were achieved in good to excellent yields starting from aryl bromides and different olefins. The reaction was carried out in a short reaction time and with low catalyst loading, leading to high turnover frequency (TOFs of the order of 100 h−1). The advantages like operational simplicity, high robustness, efficiency and turnover frequency, the utilization of aqueous media and simple product work-up make this protocol a great option for stilbene syntheses by Mizoroki–Heck reaction.


2019 ◽  
Author(s):  
John Montgomery ◽  
Alexander W. Rand

A new method to access alpha-arylated benzamides has been enabled by metallaphotoredox catalysis. This system allows for non-directed C–H functionalization of N-alkyl benzamides using a dual nickel/iridium catalytic system to form tertiary stereocenters in good enantiomeric excess and moderate yields. This reaction shows excellent functional group compatibility and can be performed using a number of sterically and electronically different aryl bromides and secondary benzamides.


2019 ◽  
Author(s):  
John Montgomery ◽  
Alexander W. Rand

A new method to access alpha-arylated benzamides has been enabled by metallaphotoredox catalysis. This system allows for non-directed C–H functionalization of N-alkyl benzamides using a dual nickel/iridium catalytic system to form tertiary stereocenters in good enantiomeric excess and moderate yields. This reaction shows excellent functional group compatibility and can be performed using a number of sterically and electronically different aryl bromides and secondary benzamides.


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


2019 ◽  
Vol 23 (16) ◽  
pp. 1756-1770
Author(s):  
Sofia Strekalova ◽  
Mikhail Khrizanforov ◽  
Oleg Sinyashin ◽  
Yulia Budnikova

The interest in organophosphorus compounds with a C-P bond is due to their wide use in various fields, especially in medicine and agrochemistry. Prominent examples of anti-cancer, antibacterial, and anti-HIV agents are therapeutic candidates containing a phosphonic acid group fragment. This review provides modern synthetic methods for obtaining phosphorylated aromatic and heteroaromatic compounds with the participation of complexes and salts of various metals developed in recent years as well modern protocol - electrochemical synthesis which allows carrying out reactions at room temperature and normal pressure with no additional oxidants or bases. Herein, we demonstrate new trends and evolution of phosphorylation reactions in catalysis.


Sign in / Sign up

Export Citation Format

Share Document