ChemInform Abstract: Preparation of Multicomponent Oxides by Mechanochemical Methods

ChemInform ◽  
2013 ◽  
Vol 44 (8) ◽  
pp. no-no
Author(s):  
A. F. Fuentes ◽  
L. Takacs
Author(s):  
Michael P. Mallamaci ◽  
James Bentley ◽  
C. Barry Carter

Glass-oxide interfaces play important roles in developing the properties of liquid-phase sintered ceramics and glass-ceramic materials. Deposition of glasses in thin-film form on oxide substrates is a potential way to determine the properties of such interfaces directly. Pulsed-laser deposition (PLD) has been successful in growing stoichiometric thin films of multicomponent oxides. Since traditional glasses are multicomponent oxides, there is the potential for PLD to provide a unique method for growing amorphous coatings on ceramics with precise control of the glass composition. Deposition of an anorthite-based (CaAl2Si2O8) glass on single-crystal α-Al2O3 was chosen as a model system to explore the feasibility of PLD for growing glass layers, since anorthite-based glass films are commonly found in the grain boundaries and triple junctions of liquid-phase sintered α-Al2O3 ceramics.Single-crystal (0001) α-Al2O3 substrates in pre-thinned form were used for film depositions. Prethinned substrates were prepared by polishing the side intended for deposition, then dimpling and polishing the opposite side, and finally ion-milling to perforation.


1988 ◽  
Vol 36 (6) ◽  
pp. 1543-1552 ◽  
Author(s):  
D. Dimos ◽  
J. Wolfenstine ◽  
D.L. Kohlstedt

2000 ◽  
Vol 623 ◽  
Author(s):  
Tadatsugu Minami ◽  
Toshihiro Miyata ◽  
Hidenobu Toda ◽  
Shingo Suzuki

AbstractTransparent and conductive thin films using new multicomponent oxides consisting of a combination of different In2O3 based ternary compounds have been prepared on room temperature substrates by r.f. magnetron sputtering. Transparent and conductive (Ga,In)2O3-MgIn2O4, (Ga,In)2O3-Zn2In2O2, (Ga,In)2O3-In4Sn3O12, Zn2In2O5,-In4Sn3O12 and Zn21n2O5-MgIn2O4 films were prepared over the whole range of compositions in these multicomponent oxides. The electrical and chemical properties of the resulting films could be controlled by varying the composition in the target. The resistivity, band-gap energy, work function and etching rate of the resulting multicomponent oxide films ranged between the properties of the two ternary compound films. This paper also presents a discussion of a significant spatial distribution of resistivity found on the substrate of the multicomponent oxide films as a function of composition. The resistivity distribution is attributable to the oxygen concentration on the substrate surface rather than the bombardment effect of high energy particles.


1998 ◽  
Vol 57 (7) ◽  
pp. 3838-3843 ◽  
Author(s):  
A. F. Kohan ◽  
G. Ceder

MRS Bulletin ◽  
1992 ◽  
Vol 17 (2) ◽  
pp. 44-53 ◽  
Author(s):  
Catherine M. Cotell ◽  
Kenneth S. Grabowski

The successful use of pulsed laser deposition (PLD) to fabricate thin film superconductors has generated interest in using the technique to deposit thin films of other materials. The compositional fidelity between laser target and deposited film and the ability to deposit films in reactive gas environments make the PLD process particularly well suited to the deposition of complex multicomponent materials. Cheung and Sankur recently provided an excellent review of the PLD field, including a table of over 100 elements, inorganic and organic compounds, andsuperlattices that have been laser evaporated. Over 75 of these materials were deposited as thin films.The goal of this article is to provide an introduction to some of the newer applications of PLD for thin film fabrication. Four classes of materials are highlighted: ferroelectrics, bioceramics, ferrites, and tribological materials. Ferroelectric materials are structurally related to the high-temperature superconducting oxides and therefore are a direct extension of the recent superconducting oxide work. Bioceramics are dissimilar in structure and application to both ferroelectrics and superconducting oxides, but they are complex multicomponent oxides and, therefore, benefit from the use of PLD. Ferrites, also complex, multicomponent oxides, represent another exciting, but only lightly explored opportunity for PLD. In contrast, tribological materials are typically neither complex nor multicomponent. Nevertheless, interesting structures and properties have been produced by PLD. A few of the more important ones will be discussed. These different types of materials demonstrate the diversity of capabilities offered by PLD.


Sign in / Sign up

Export Citation Format

Share Document