Microanalysis of silicate glass films grown on α-Al2O3 by pulsed-laser deposition

Author(s):  
Michael P. Mallamaci ◽  
James Bentley ◽  
C. Barry Carter

Glass-oxide interfaces play important roles in developing the properties of liquid-phase sintered ceramics and glass-ceramic materials. Deposition of glasses in thin-film form on oxide substrates is a potential way to determine the properties of such interfaces directly. Pulsed-laser deposition (PLD) has been successful in growing stoichiometric thin films of multicomponent oxides. Since traditional glasses are multicomponent oxides, there is the potential for PLD to provide a unique method for growing amorphous coatings on ceramics with precise control of the glass composition. Deposition of an anorthite-based (CaAl2Si2O8) glass on single-crystal α-Al2O3 was chosen as a model system to explore the feasibility of PLD for growing glass layers, since anorthite-based glass films are commonly found in the grain boundaries and triple junctions of liquid-phase sintered α-Al2O3 ceramics.Single-crystal (0001) α-Al2O3 substrates in pre-thinned form were used for film depositions. Prethinned substrates were prepared by polishing the side intended for deposition, then dimpling and polishing the opposite side, and finally ion-milling to perforation.

1998 ◽  
Vol 84 (4) ◽  
pp. 2352-2354 ◽  
Author(s):  
R. Serna ◽  
J. M. Ballesteros ◽  
M. Jiménez de Castro ◽  
J. Solis ◽  
C. N. Afonso

1994 ◽  
Vol 361 ◽  
Author(s):  
See-Hyung Lee ◽  
Tae W. Noh ◽  
Jai-Hyung Lee ◽  
Young-Gi Kim

ABSTRACTPulsed laser deposition was used to grow epitaxial LiNbO3 films on sapphire(0001) substrates with a single crystal LiNbO3 target. Using deposition temperatures below 450 °C, LiNbO3 films with correct stoichiometry could be grown without using Li-rich targets. Rutherford backscattering spectrometry measurements showed that the oxygen to niobium ratio is 3.00 ± 0.15 to 1.00. It was also found that the crystallographic orientations of the LiNbO3 films could be controlled by adjusting the oxygen pressure during deposition. An x-ray pole figure shows that epitaxial LiNbO3 films were grown on sapphire(0001), but with twin boundaries.


1995 ◽  
Vol 401 ◽  
Author(s):  
Sampriti Sen ◽  
E. Ching-Prado ◽  
A. Reynés-Figueroa ◽  
R. S. Katiyar ◽  
J. S. Horwitz ◽  
...  

AbstractA film of Sr0.35Ba0.65TiO3 (SBT) has been grown in situ by pulsed laser deposition on (001) LaAlO3 single crystal. From X-ray diffraction studies the sample is found to be in single phase and well oriented. Raman spectrum of the SBT film shows bands around 178, 219, 296, 513, 571 and 741 cm”. The spectrum is similar to that found in SBT ceramic material, but the frequencies of the phonons are shifted. This can be explained if the film is under stress due to the presence of defects. The bands at 296 and 741cm−1 correspond to the B1 and A1(LO) normal modes of the BaTiO3 (BT) system, and they are representative of the BT tetragonal phase, which at first glance appears to contradict earlier structural symmetry assignment for SBT(x=0.35) film at room temperature. Micro-Raman measurements from different regions of the film indicate that the SBT film is homogeneous. The bands at 296 and 741 cm−1 are broader in comparison to those in BT single crystal and SBT ceramic material. Temperature dependent halfwidths of these modes suggest strong contribution of defects. Temperature dependent results are discussed in terms of anharmonic contributions involving three and four phonon processes as well as defects. Also, the orthorhombic and rhombohedral phase transitions are discussed. Finally, SEM/EDAX and FT-IR techniques have been used for the structural characterization.


CrystEngComm ◽  
2019 ◽  
Vol 21 (22) ◽  
pp. 3409-3414 ◽  
Author(s):  
Paul Alexander Vermeulen ◽  
Jamo Momand ◽  
Bart Jan Kooi

Single-crystal like WTe2 films are grown by exploiting van der Waals epitaxy at low temperatures, using pulsed laser deposition.


1993 ◽  
Author(s):  
Robert W. Eason ◽  
Katharine E. Youden ◽  
Treena Grevatt ◽  
Harvey N. Rutt ◽  
Rajpal S. Deol ◽  
...  

2004 ◽  
Vol 453-454 ◽  
pp. 224-228 ◽  
Author(s):  
S Liste ◽  
J Serra ◽  
P González ◽  
J.P Borrajo ◽  
S Chiussi ◽  
...  

1998 ◽  
Vol 526 ◽  
Author(s):  
K. Dovidenko ◽  
S. Oktyabrsky ◽  
A. K. Sharma ◽  
J. Narayan

AbstractThin (~ 250 nm) films of ZnO grown by pulsed laser deposition on basal plane of sapphire were studied by transmission electron microscopy (TEM). Plan-view TEM study proved the films to be single crystal with the following epitaxial relationship with the substrate: (0001)znO || (0001)sap with the 30 30° in-plane rotation - [0110]ZnO || [1210]sap. Dislocations lying mostly in basal plane of ZnO and aligned along both <:1010> and <1120> directions having b=1/3[1120] were found. ZnO films were found to have layered growth morphology contrary to columnar morphology of III-nitrides. Consequently, the threading dislocation density in ZnO films (opposing to the AIN and GaN) drops very fast with the thickness: down to 107cm-2 at ~ 250 nm. The effect of post-annealing (which caused significant improvement in electrical and optical properties) on the microstructure of ZnO films was also studied. Contrary to the atomically sharp and clean interface in the as-deposited films, the post-annealed ZnO/sapphire interface contained reacted layer of 30 - 60 A thickness. The structure of the interlayer was determined to be ZnAl2O4 (spinel). The formation of this single crystal spinel layer did not cause deterioration of the ZnO film structure or properties. We have also explored the possibilities of using ZnO as a buffer for III-nitride growth. The epitaxial AIN films were grown on top of the ZnO layer by pulsed laser deposition. Thin (20 -60 A) interfacial reaction layer (also spinel ZnAm2O4) was observed between AIN and ZnO. Formation of this interlayer is studied in conjunction with the AIN epitaxy and the characteristics of defects and interfaces.


Sign in / Sign up

Export Citation Format

Share Document