ChemInform Abstract: Nickel-Catalyzed Reductive and Borylative Cleavage of Aromatic Carbon-Nitrogen Bonds in N-Aryl Amides and Carbamates.

ChemInform ◽  
2014 ◽  
Vol 45 (42) ◽  
pp. no-no
Author(s):  
Mamoru Tobisu ◽  
Keisuke Nakamura ◽  
Naoto Chatani
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Lei Li ◽  
Min Yang ◽  
Qiuqin He ◽  
Renhua Fan

Abstract Insertion of atoms into aromatic carbon-nitrogen bonds is an appealing method for the synthesis of nitrogen-containing molecules and it has the advantage of the availability and abundance of anilines. However, the direct cleavage of aromatic carbon-nitrogen bonds is challenging due to the particularly inert and stable nature of these bonds. Here we report a formal, enantioselective one-carbon insertion into an aromatic carbon-nitrogen bond via an aromaticity dissembly-reconstruction process to directly convert anilines to chiral α-branched benzylic amines. The process involves oxidative dearomatization of para-substituted anilines, chiral sulfur ylide-mediated asymmetric aziridination, and subsequent rearrangement. Chiral sulfur ylides serve as one-carbon insertion units.


2020 ◽  
Author(s):  
Tulin Okbinoglu ◽  
Pierre Kennepohl

Molecules containing sulfur-nitrogen bonds, like sulfonamides, have long been of interest due to their many uses and chemical properties. Understanding the factors that cause sulfonamide reactivity is important, yet their continues to be controversy regarding the relevance of S-N π bonding in describing these species. In this paper, we use sulfur K-edge x-ray absorption spectroscopy (XAS) in conjunction with density functional theory (DFT) to explore the role of S<sub>3p</sub> contributions to π-bonding in sulfonamides, sulfinamides and sulfenamides. We explore the nature of electron distribution of the sulfur atom and its nearest neighbors and extend the scope to explore the effects on rotational barriers along the sulfur-nitrogen axis. The experimental XAS data together with TD-DFT calculations confirm that sulfonamides, and the other sulfinated amides in this series, have essentially no S-N π bonding involving S<sub>3p</sub> contributions and that electron repulsion and is the dominant force that affect rotational barriers.


2002 ◽  
Vol 124 (29) ◽  
pp. 8561-8574 ◽  
Author(s):  
Joykrishna Dey ◽  
AnnMarie C. O'Donoghu ◽  
Rory A. More O'Ferrall

Synthesis ◽  
2017 ◽  
Vol 49 (15) ◽  
pp. 3347-3356 ◽  
Author(s):  
Gabriele Micheletti ◽  
Carla Boga

This short review provides an overview on the interaction between 1,3,5-triaminobenzene derivatives and different kinds of electrophiles. Due to the ambident reactivity of these nucleophiles (i.e., at the nitrogen atom of the substituents and at the aromatic carbon atom) different compounds can be obtained. Particular attention is devoted to the detection, isolation, and characterization of covalent intermediates of aromatic substitution, starting from Wheland intermediates until the first detection and characterization of Wheland–Meisenheimer intermediates.1 Introduction2 Reactions between 1,3,5-Triaminobenzene Derivatives and Charged Electrophiles2.1 The Proton as an Electrophile2.2 Arenediazonium Salts as Electrophiles3 Reactions between 1,3,5-Triaminobenzene Derivatives and Neutral­ Electrophiles3.1 Alkyl Halides as Electrophiles3.2 Acyl Halides and Sulfonyl Chlorides as Electrophiles3.3 Aryl Halides and Heteroaryl Halides as Electrophiles3.4 Polynitroheteroaromatics as Electrophiles4 Conclusion


Inorganics ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 76 ◽  
Author(s):  
Yasunobu Egawa ◽  
Chihiro Fukumoto ◽  
Koichiro Mikami ◽  
Nobuhiro Takeda ◽  
Masafumi Unno

Carboxylic acid chlorides are useful substrates in organic chemistry. Many germanium analogues of carboxylic acid chloride have been synthesized so far. Nevertheless, all of the reported germathioacid chlorides use bidentate nitrogen ligands and contain germanium-nitrogen bonds. Our group synthesized germathioacid chloride, Ge(S)Cl{C6H3-2,6-Tip2}(Im-i-Pr2Me2), using N-heterocyclic carbene (Im-i-Pr2Me2). As a result of density functional theory (DFT) calculation, it was found that electrons are localized on sulfur, and the germanium-sulfur bond is a single bond with a slight double bond property.


Sign in / Sign up

Export Citation Format

Share Document