ChemInform Abstract: Synthesis of C-Terminal Peptide Thioesters Using Fmoc-Based Solid-Phase Peptide Chemistry

ChemInform ◽  
2015 ◽  
Vol 46 (21) ◽  
pp. no-no
Author(s):  
Pernille Tofteng Shelton ◽  
Knud J. Jensen
2020 ◽  
Vol 11 (4) ◽  
pp. 5225-5228
Author(s):  
Deepshikha Verma ◽  
Pillai V N R ◽  
Giriraj Tailor

Protecting groups like Fmoc and coupling both steps are essential to monitoring the Fmoc SPPS (Solid Phase Peptide Synthesis) reaction completion. Reliable methods are used to detect the unreacted number of amino groups for monitoring these two essential reaction steps of coupling and cleavage. The ability to detect the complete coupling, incomplete coupling or failure of coupling we use many colour tests in the laboratory and based on this the Fmoc peptide chemistry allows the control of the completion of the Fmoc cleavage. The most important test used is the Kaiser test and highly recommended to monitor the coupling and cleavage steps. If the result of colour tests is positive after coupling, then the second coupling should be performed. Then again use the colour test to detect the level of coupling. If the result is still slightly positive, repeat coupling with the smaller modification of reagents such as used PyBOP instead of HOBT AND HOAT. These colour tests help in revealing the presence of unreacted amino-functional groups. Thus, we need to block these free N-terminal of amino- acids which help in avoiding the making of deletion of sequence.


Author(s):  
R. C. Sheppard

The Chemical Society publication Annual Reports on the Progress of Chemistry for 1963 attempted to inform readers of all the highly significant advances in all the major fields of pure chemistry during that year. Fortunately, the section on peptide chemistry drew attention to a paper by R. B. Merrifield which had just been published in the Journal of the American Chemical Society: A novel approach to peptide synthesis has been the use of a chloromethylated polystyrene polymer as an insoluble but porous solid phase on which the coupling reactions are carried out. Attachment to the polymer constitutes protection of the carboxyl group (as a modified benzyl ester), and the peptide is lengthened from its amino-end by successive carbodiimide couplings. The method has been applied to the synthesis of a tetrapeptide, but incomplete reactions lead to the accumulation of by products. Further development of this interesting method is awaited. I remember thinking at the time that in this paper we had possibly seen both the beginning and the end of the interesting new technique of solid phase peptide synthesis. To many organic chemists, the described result was that anticipated—difficulty in bringing heterogeneous reactions to completion resulting in impure products. Both this and purification problems were expected to worsen as the chain length was increased beyond Merrifield’s tetrapeptide limit. In fact, I probably had at the time an inadequate appreciation of the difference between truly heterogeneous or surface reactions and those in the solvated gel phase. The latter approaches much more closely the solution situation. However, the new technique also flouted many of the basic principles of contemporary organic synthesis which required rigorous isolation, purification, and characterization regimes following each synthetic step. In Merrifield’s new technique, isolation consisted simply of washing the solid resin, there was no other purification of the products of each reaction, and little or no characterization of resin-bound intermediates was attempted. The first two of these are of course the important characteristics which give the method its speed and simplicity and contribute to its efficiency. Small wonder, though, that in many minds there was doubt about the future of the new technique.


2017 ◽  
Vol 8 (1) ◽  
pp. 117-123 ◽  
Author(s):  
Hader E. Elashal ◽  
Yonnette E. Sim ◽  
Monika Raj

Fmoc solid phase peptide synthesis of peptide thioesters by displacement of the cyclic urethane moiety obtained by the selective activation of C-terminal serine.


2010 ◽  
Vol 51 (2) ◽  
pp. 407-410 ◽  
Author(s):  
Yuko Nakahara ◽  
Ichiro Matsuo ◽  
Yukishige Ito ◽  
Risa Ubagai ◽  
Hironobu Hojo ◽  
...  

2009 ◽  
Vol 48 (40) ◽  
pp. 7411-7414 ◽  
Author(s):  
A. Pernille Tofteng ◽  
Kasper K. Sørensen ◽  
Kilian W. Conde-Frieboes ◽  
Thomas Hoeg-Jensen ◽  
Knud J. Jensen

2018 ◽  
Vol 20 (11) ◽  
pp. 3170-3173 ◽  
Author(s):  
Matteo Staderini ◽  
Alessia Gambardella ◽  
Annamaria Lilienkampf ◽  
Mark Bradley

Synthesis ◽  
2020 ◽  
Vol 52 (21) ◽  
pp. 3189-3210
Author(s):  
Ayman El-Faham ◽  
Fernando Albericio ◽  
Srinivasa Rao Manne ◽  
Beatriz G. de la Torre

AbstractOxymaPure [ethyl 2-cyano-2-(hydroxyimino)acetate] is an exceptional reagent with which to suppress racemization and enhance coupling efficiency during amide bond formation. The tremendous popularity of OxymaPure has led to the development of several Oxyma-based reagents. OxymaPure and its derived reagents are widely used in solid- and solution-phase peptide chemistry. This review summarizes the recent developments and applications of OxymaPure and Oxyma-based reagents in peptide chemistry, in particular in solution-phase chemistry. Moreover, the side reaction associated with OxymaPure is also discussed.1 Introduction2 Oxyma-Based Coupling Reagents2.1 Aminium/Uronium Salts of OxymaPure2.2 Phosphonium Salts of OxymaPure2.3 Oxyma-Based Phosphates2.4 Sulfonate Esters of OxymaPure2.5 Benzoate Esters of OxymaPure2.6 Carbonates of OxymaPure Derivatives3 OxymaPure Derivatives4 Other Oxime-Based Additives and Coupling Reagents5 Side Reactions Using OxymaPure Derivatives6 Conclusion7 List of Abbreviations


Sign in / Sign up

Export Citation Format

Share Document