A study on liquid‐liquid dispersions in a continuous mixer via computational fluid dynamics (CFD) simulation combined with population balance model (PBM)

Author(s):  
Qiao Tang ◽  
Sishi Ye ◽  
Yundong Wang ◽  
Zuohua Liu
2015 ◽  
Vol 362 ◽  
pp. 200-208
Author(s):  
Zhen Hong Ban ◽  
Kok Keong Lau ◽  
Mohd Shariff Azmi

The bubble growth modelling in a supersaturated solution is difficult to be accomplished as it requires coupling of many interrelated hydrodynamics and mass transfer parameters which include pressure drop, supersaturation ratio, bubble size, etc. In the current work, all these factors have been taken into consideration to predict bubble growth in a supersaturated solution using Computational Fluid Dynamics (CFD) – Population Balance Model (PBM) approach. A classical bubble growth model has been used in the simulation. The bubble growth rate was successfully validated with experimental data in terms of bubble size. The attempt to simulate the bubble growth phenomenon of more than a single bubble condition has also been presented. The outcome of this approach is expected to be applied in many engineering areas.


Author(s):  
S N A Ahmad Termizi ◽  
C Y Khor ◽  
M A M Nawi ◽  
Nurlela Ahmad ◽  
Muhammad Ikman Ishak ◽  
...  

2013 ◽  
Vol 368-370 ◽  
pp. 599-602 ◽  
Author(s):  
Ian Hung ◽  
Hsien Te Lin ◽  
Yu Chung Wang

This study focuses on the performance of air conditioning design at the Dazhi Cultural Center and uses a computational fluid dynamics (CFD) simulation to discuss the differences in wind velocity and ambient indoor temperature between all-zone air conditioning design and stratified air conditioning design. The results have strong implications for air conditioning design and can improve the indoor air quality of assembly halls.


Sign in / Sign up

Export Citation Format

Share Document