Prediction of pressure drop and void-fraction in annular two-phase flows

1985 ◽  
Vol 63 (5) ◽  
pp. 728-734 ◽  
Author(s):  
V. Kadambi
Author(s):  
Akimaro Kawahara ◽  
Michio Sadatomi ◽  
Keitaro Nei ◽  
Hideki Matsuo ◽  
Takatoshi Masuda

In this study, gas-liquid two-phase flows in a horizontal rectangular microchannel have been investigated. The rectangular microchannel has the hydraulic diameter of 0.235 mm, and the width and the depth of 0.24 mm and 0.23 mm, respectively. A T-junction type gas-liquid mixer was used to introduce gas and liquid in the channel. In order to know the effects of liquid properties, distilled water, ethanol and HFE7200 were used as the test liquids, while nitrogen gas as the test gas. The flow pattern, the bubble length, the liquid slug length and the bubble velocity in two-phase flow were measured with a high speed video camera, and the void fraction was determined from the bubble velocity data and the superficial gas velocity data. In addition, the pressure drop was also measured with a calibrated differential pressure transducer. The bubble length data were compared with the calculation by the scaling law proposed by Garstecki et al (2006). The bubble velocity data and/or the void fraction data were well correlated with the well-known drift flux model (Zuber and Findlay, 1965) with a new distribution parameter correlation developed in this study. The frictional pressure drop data were also well correlated with Lockhart-Martinelli method with a correlation of two-phase friction multiplier.


Author(s):  
Tiago Ferreira Souza ◽  
Caio Araujo ◽  
Maurício Figueiredo ◽  
FLAVIO SILVA ◽  
Ana Maria Frattini Fileti

2016 ◽  
Vol 94 ◽  
pp. 422-432 ◽  
Author(s):  
N. Chikhi ◽  
R. Clavier ◽  
J.-P. Laurent ◽  
F. Fichot ◽  
M. Quintard

2018 ◽  
Vol 332 ◽  
pp. 147-161 ◽  
Author(s):  
Cihang Lu ◽  
Ran Kong ◽  
Shouxu Qiao ◽  
Joshua Larimer ◽  
Seungjin Kim ◽  
...  

2004 ◽  
Vol 126 (4) ◽  
pp. 546-552 ◽  
Author(s):  
Peter M.-Y. Chung ◽  
Masahiro Kawaji ◽  
Akimaro Kawahara ◽  
Yuichi Shibata

An adiabatic experiment was conducted to investigate the effect of channel geometry on gas-liquid two-phase flow characteristics in horizontal microchannels. A water-nitrogen gas mixture was pumped through a 96 μm square microchannel and the resulting flow pattern, void fraction and frictional pressure drop data were compared with those previously reported by the authors for a 100 μm circular microchannel. The pressure drop data were best estimated using a separated-flow model and the void fraction increased non-linearly with volumetric quality, regardless of the channel shape. However, the flow maps exhibited transition boundaries that were shifted depending on the channel shape.


Sign in / Sign up

Export Citation Format

Share Document