Cu 2 O nanocrystal model catalysts

Author(s):  
Zhenhua Zhang ◽  
Rui You ◽  
Weixin Huang
2016 ◽  
Vol 49 (3) ◽  
pp. 520-527 ◽  
Author(s):  
Weixin Huang

2019 ◽  
Author(s):  
Moritz Wolf ◽  
Nico Fischer ◽  
Michael Claeys

<p>The inert nature of graphitic samples allows for characterisation of rather isolated supported nanoparticles in model catalysts, as long as sufficiently large inter-particle distances are obtained. However, the low surface area of graphite and the little interaction with nanoparticles result in a challenging application of conventional preparation routes in practice. In the present study, a set of graphitic carbon materials was characterised in order to identify potential support materials for the preparation of model catalyst systems. Various sizes of well-defined Co<sub>3</sub>O<sub>4</sub> nanoparticles were synthesised separately and supported onto exfoliated graphite powder, that is graphite after solvent-assisted exfoliation <i>via</i> ultrasonication resulting in thinner flakes with increased specific surface area. The developed model catalysts are ideally suited for sintering studies of isolated nano-sized cobaltous particles as the graphitic support material does not provide distinct metal-support interaction. Furthermore, the differently sized cobaltous particles in the various model systems render possible studies on structural dependencies of activity, selectivity, and deactivation in cobalt oxide or cobalt catalysed reactions.</p>


2009 ◽  
Vol 96 (2) ◽  
pp. 345-356 ◽  
Author(s):  
Orsolya Hakkel ◽  
Zoltán Pászti ◽  
Tamás Keszthelyi ◽  
Krisztina Frey ◽  
László Guczi

2017 ◽  
Vol 121 (47) ◽  
pp. 26321-26329 ◽  
Author(s):  
Natalia M. Martin ◽  
Magnus Skoglundh ◽  
Gudmund Smedler ◽  
Agnes Raj ◽  
David Thompsett ◽  
...  

2004 ◽  
Vol 839 ◽  
Author(s):  
Peter Moeck ◽  
Wentao Qin ◽  
Philip B. Fraundorf

ABSTRACTIt is well known that the crystallographic phase and morphology of many materials changes with the crystal size in the tens of nanometer range and that many nanocrystals possess structural defects in excess of their equilibrium levels. A need to determine the ideal and real structure of individual nanoparticles, therefore, arises. High-resolution phase-contrast transmission electron microscopy (TEM) and atomic resolution Z-contrast scanning TEM (STEM) when combined with transmission electron goniometry offer the opportunity of develop dedicated methods for the crystallographic characterization of nanoparticles in three dimensions. This paper describes tilt strategies for taking data from individual nanocrystals “as found”, so as to provide information on their lattice structure and orientation, as well as on the structure and orientation of their surfaces and structural defects. Internet based java applets that facilitate the application of this technique for cubic crystals with calibrated tilt-rotation and double-tilt holders are mentioned briefly. The enhanced viability of image-based nanocrystallography in future aberration-corrected TEMs and STEMs is illustrated on a nanocrystal model system.


2004 ◽  
Vol 108 (46) ◽  
pp. 17905-17914 ◽  
Author(s):  
Armando Borgna ◽  
Bruce G. Anderson ◽  
Abdool M. Saib ◽  
Hendrik Bluhm ◽  
Michael Hävecker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document