1‐[2‐(1‐Cyclobutylpiperidin‐4‐yloxy)‐6,7‐dihydro‐4H‐thiazolo[5,4‐c]pyridin‐5‐yl]propan‐1‐one: A Novel Histamine H3R Inverse Agonist with Efficacy in Animal Models of Cognition

ChemMedChem ◽  
2021 ◽  
Author(s):  
Ramakrishna Nirogi ◽  
Anil Karbhari Shinde ◽  
Rajesh Kumar Badange ◽  
Veena Reballi ◽  
Pramod Kumar Achanta ◽  
...  
2021 ◽  
pp. 026988112098641
Author(s):  
Ramakrishna Nirogi ◽  
Venkata R Grandhi ◽  
Rajesh B Medapati ◽  
Narender Ganuga ◽  
Vijay Benade ◽  
...  

Background: Central histamine H3 receptors are a family of presynaptic auto and heteroreceptors. Blockade of the presynaptic H3 receptors activates the downstream pathway(s) involved in the processes of learning and memory, making it a potential therapeutic option for ameliorating cognitive dysfunction. Samelisant (SUVN-G3031) is a potent and selective inverse agonist at the H3 receptors. Aim: The aim of this research is to study the effects of Samelisant in diverse animal models of cognitive functions. Methods: The effects of Samelisant on cognitive functions were studied using social recognition, object recognition and Morris water maze tasks. Neurochemical and electrophysiological effects of Samelisant were monitored using microdialysis and electroencephalography techniques. Results: Samelisant showed procognitive effects in diverse animal models of cognition at doses ranging from 0.3 to 3 mg/kg, per os ( p.o.) (social recognition and object recognition task). Samelisant significantly increased the brain acetylcholine levels in the cortex at doses of 10 and 20 mg/kg, p.o. In the Morris water maze task, combined administration of suboptimal doses of Samelisant and donepezil resulted in procognitive effects significantly larger than the either treatment. Similarly, Samelisant significantly potentiated the effects of donepezil on pharmacodynamic biomarkers of cognition i.e. acetylcholine levels in brain and neuronal theta oscillations. Conclusion: Samelisant may have potential utility in the treatment of cognitive deficits associated with hypocholinergic state.


2019 ◽  
Vol 42 ◽  
Author(s):  
Nicole M. Baran

AbstractReductionist thinking in neuroscience is manifest in the widespread use of animal models of neuropsychiatric disorders. Broader investigations of diverse behaviors in non-model organisms and longer-term study of the mechanisms of plasticity will yield fundamental insights into the neurobiological, developmental, genetic, and environmental factors contributing to the “massively multifactorial system networks” which go awry in mental disorders.


2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


2020 ◽  
Vol 134 (3) ◽  
pp. 248-266
Author(s):  
Javed Iqbal ◽  
Frank Adu-Nti ◽  
Xuejiao Wang ◽  
Hui Qiao ◽  
Xin-Ming Ma
Keyword(s):  

1991 ◽  
Author(s):  
Peter N. Temesy-Arnos ◽  
◽  
Theodore D. Fraker ◽  
R. Douglas Wilkerson

2007 ◽  
Author(s):  
Celine Fouquet ◽  
Kinga Igloi ◽  
Alain Berthoz ◽  
Laure Rondi-Reig

Sign in / Sign up

Export Citation Format

Share Document