Sex difference in depression: Which animal models mimic it.

2020 ◽  
Vol 134 (3) ◽  
pp. 248-266
Author(s):  
Javed Iqbal ◽  
Frank Adu-Nti ◽  
Xuejiao Wang ◽  
Hui Qiao ◽  
Xin-Ming Ma
Keyword(s):  
2019 ◽  
Vol 42 ◽  
Author(s):  
Nicole M. Baran

AbstractReductionist thinking in neuroscience is manifest in the widespread use of animal models of neuropsychiatric disorders. Broader investigations of diverse behaviors in non-model organisms and longer-term study of the mechanisms of plasticity will yield fundamental insights into the neurobiological, developmental, genetic, and environmental factors contributing to the “massively multifactorial system networks” which go awry in mental disorders.


2003 ◽  
Vol 19 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Gisli H. Gudjonsson ◽  
Jon Fridrik Sigurdsson

Summary: The Gudjonsson Compliance Scale (GCS), the COPE Scale, and the Rosenberg Self-Esteem Scale were administered to 212 men and 212 women. Multiple regression of the test scores showed that low self-esteem and denial coping were the best predictors of compliance in both men and women. Significant sex differences emerged on all three scales, with women having lower self-esteem than men, being more compliant, and using different coping strategies when confronted with a stressful situation. The sex difference in compliance was mediated by differences in self-esteem between men and women.


2012 ◽  
Vol 33 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Joseph Glicksohn ◽  
Yamit Hadad

Individual differences in time production should indicate differences in the rate of functioning of an internal clock, assuming the existence of such a clock. And sex differences in time production should reflect a difference in the rate of functioning of that clock between men and women. One way of approaching the data is to compute individual regressions of produced duration (P) on target duration (T), after log transformation, and to derive estimates for the intercept and the slope. One could investigate a sex difference by comparing these estimates for men and women; one could also contrast them by looking at mean log(P). Using such indices, we found a sex difference in time production, female participants having a relatively faster internal clock, making shorter time productions, and having a smaller exponent. The question is whether a sex difference in time production would be found using other methods for analyzing the data: (1) the P/T ratio; (2) an absolute discrepancy (|P-T|) score; and (3) an absolute error (|P-T|/T) score. For the P/T ratio, female participants have a lower mean ratio in comparison to the male participants. In contrast, the |P-T| and |P-T|/T indices seem to be seriously compromised by wide individual differences.


2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


1991 ◽  
Author(s):  
Peter N. Temesy-Arnos ◽  
◽  
Theodore D. Fraker ◽  
R. Douglas Wilkerson

2007 ◽  
Author(s):  
Celine Fouquet ◽  
Kinga Igloi ◽  
Alain Berthoz ◽  
Laure Rondi-Reig

Sign in / Sign up

Export Citation Format

Share Document