Gradients between nasal and temporal areas of the cat retina in the properties of retinal ganglion cells

1980 ◽  
Vol 192 (2) ◽  
pp. 219-233 ◽  
Author(s):  
Jonathan Stone ◽  
Audie Leventhal ◽  
Charles R. R. Watson ◽  
Jeremy Keens ◽  
Rosemary Clarke
1987 ◽  
Vol 58 (5) ◽  
pp. 940-964 ◽  
Author(s):  
L. R. Stanford

1. The morphology of 21 physiologically characterized X-cells in the cat retina was studied using intracellular recording and injection with horseradish peroxidase. The data from these experiments were used to test directly the relationships between specific structural and functional characteristics of a sample of individual retinal ganglion cells of the same anatomical and physiological class. Where possible, the response properties of 53 other retinal X-cells that were not successfully injected and recovered are compared with those of the labeled sample. These comparisons, which included conduction velocities (both intraretinal and extraretinal) and receptive-field size, indicate that the labeled X-cells are a representative sample of the population of retinal X-cells at corresponding eccentricities. 2. The somata of this group of injected retinal X-cells increase in size with increasing distance from the area centralis up to 13 degrees eccentricity (the greatest distance from the area centralis at which an X-cell was injected and recovered). The soma sizes of this sample of retinal ganglion cells range from 143.5 to 529.9 micron 2 (diam = 13.5-26.0 micron). Comparison of the soma sizes of the injected and recovered retinal X-cells with those of 300 Nissl-stained neurons at comparable eccentricities in the same retinae indicate that the injected sample had soma sizes that are consistent with their classification as "medium-sized" retinal ganglion cells (5, 69, 74). 3. All of the physiologically characterized retinal X-cells of this study have the compact dendritic arbors described to the morphological class of retinal ganglion cell called beta-cells by Boycott and Wassle (5). The dendrites of some of these neurons have many spinelike appendages, whereas those of other cells are nearly appendage free. We found no obvious correlation between the presence of dendritic appendages and any specific response characteristic ("ON-" or "OFF-center", etc). Like the size of the soma, both the diameter of the dendritic arbors of these cells, and the number of primary dendrites (those dendrites that originate directly from the soma), increase with increasing distance from the area centralis. 4. Since both morphological and physiological data were obtained for these neurons, it is possible to describe the relationship between the size of the receptive-field center and the diameter of the dendritic arbor for individual retinal ganglion cells. These comparisons show that the relationship between the anatomical measure and this response parameter for the entire sample of labeled X-cells is not as strong as had previously been suggested.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 10 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Steven J. Ault ◽  
Kirk G. Thompson ◽  
Yifeng Zhou ◽  
Audie G. Leventhal

AbstractThe results of previous studies suggest that class-specific interactions contribute to the development of the different classes of retinal ganglion cells. We tested this hypothesis by examining the morphologies and distributions of alpha (α) cells in regions of mature cat retina selectively depleted of beta (β) cells as a result of visual cortex lesions at birth. We find that α cells in regions of central retina depleted of β cells are abnormally large while α cells in regions of peripheral retina depleted of β cells are abnormally small. The normal central-to-peripheral α cell soma-size gradient is absent in hemiretinae depleted of β cells. The dendritic fields of α cells in the border of β-cell-depleted hemiretina extend preferentially into the β-cell-poor hemiretina. In spite of this, α cell bodies retain their normal retinal distribution and remain distributed in a nonrandom mosaic-like pattern. Thus, it appears that the development of α retinal ganglion cells is influenced by interactions both with other α cells (class-specific interactions) and with surrounding β cells (nonclass-specific interactions).


Author(s):  
Kyril I. Kuznetsov ◽  
Vitaliy Yu. Maslov ◽  
Svetlana A. Fedulova ◽  
Nikolai S. Veselovsky

Sign in / Sign up

Export Citation Format

Share Document