calcium signals
Recently Published Documents


TOTAL DOCUMENTS

672
(FIVE YEARS 91)

H-INDEX

75
(FIVE YEARS 7)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 253
Author(s):  
Sascha Berlansky ◽  
Matthias Sallinger ◽  
Herwig Grabmayr ◽  
Christina Humer ◽  
Andreas Bernhard ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). This respiratory illness was declared a pandemic by the world health organization (WHO) in March 2020, just a few weeks after being described for the first time. Since then, global research effort has considerably increased humanity’s knowledge about both viruses and disease. It has also spawned several vaccines that have proven to be key tools in attenuating the spread of the pandemic and severity of COVID-19. However, with vaccine-related skepticism being on the rise, as well as breakthrough infections in the vaccinated population and the threat of a complete immune escape variant, alternative strategies in the fight against SARS-CoV-2 are urgently required. Calcium signals have long been known to play an essential role in infection with diverse viruses and thus constitute a promising avenue for further research on therapeutic strategies. In this review, we introduce the pivotal role of calcium signaling in viral infection cascades. Based on this, we discuss prospective calcium-related treatment targets and strategies for the cure of COVID-19 that exploit viral dependence on calcium signals.


2022 ◽  
Author(s):  
Andrew Tyler Landau ◽  
Pojeong Park ◽  
David Wong-Campos ◽  
Tian He ◽  
Adam Ezra Cohen ◽  
...  

Back-propagating action potentials (bAPs) regulate synaptic plasticity by evoking voltage-dependent calcium influx throughout dendrites. Attenuation of bAP amplitude in distal dendritic compartments alters plasticity in a location-specific manner by reducing bAP-dependent calcium influx. However, it is not known if neurons exhibit branch-specific variability in bAP-dependent calcium signals, independent of distance-dependent attenuation. Here, we reveal that bAPs fail to evoke calcium influx through voltage-gated calcium channels (VGCCs) in a specific population of dendritic branches in cortical layer 2/3 pyramidal cells, despite evoking substantial VGCC-mediated calcium influx in sister branches. These branches contain VGCCs and successfully propagate bAPs in the absence of synaptic input; nevertheless, they fail to exhibit bAP-evoked calcium influx due to a branch-specific reduction in bAP amplitude. We demonstrate that these branches have more elaborate branch structure compared to sister branches, which causes a local reduction in electrotonic impedance and bAP amplitude. Finally, we show that bAPs still amplify synaptically-mediated calcium influx in these branches because of differences in the voltage-dependence and kinetics of VGCCs and NMDA-type glutamate receptors. Branch-specific compartmentalization of bAP-dependent calcium signals may provide a mechanism for neurons to diversify synaptic tuning across the dendritic tree.


2022 ◽  
Vol 12 ◽  
Author(s):  
Eric A. Bancroft ◽  
Rahul Srinivasan

Astrocytes display a plethora of spontaneous Ca2+ signals that modulate vital functions of the central nervous system (CNS). This suggests that astrocytic Ca2+ signals also contribute to pathological processes in the CNS. In this context, the molecular mechanisms by which aberrant astrocytic Ca2+ signals trigger dopaminergic neuron loss during Parkinson’s disease (PD) are only beginning to emerge. Here, we provide an evidence-based perspective on potential mechanisms by which aberrant astrocytic Ca2+ signals can trigger dysfunction in three distinct compartments of the brain, viz., neurons, microglia, and the blood brain barrier, thereby leading to PD. We envision that the coming decades will unravel novel mechanisms by which aberrant astrocytic Ca2+ signals contribute to PD and other neurodegenerative processes in the CNS.


2022 ◽  
pp. 1-15
Author(s):  
Xue Li ◽  
Shuhan Miao ◽  
Feng Li ◽  
Fen Ye ◽  
Guang Yue ◽  
...  

2022 ◽  
Author(s):  
Nicolas Pelaez-Llaneza ◽  
Victoria Jones ◽  
Christy Kam ◽  
Alvin Lee ◽  
Alyson Parris ◽  
...  

Mucus secreting goblet cells play a vital role in the maintenance of tissue homeostasis. Here we report the discovery of an enigmatic mechanism for the generation of calcium signals that couple cholinergic input to secretion of hydrated mucus in the human colonic stem cell niche. Mechanistic insights for this study were derived from native human colonic crypts and crypt-like organoids expressing MUC2-mNEON. Importantly, we demonstrate that the human colonic stem cell niche is also a cholinergic niche, and that activation of muscarinic receptors initiates calcium signals at the apical pole of intestinal stem cells and neighbouring crypt-base-goblet-cells. The calcium signal trigger zone is defined by a microdomain of juxtaposed calcium stores expressing TPC1 and InsP3R3 calcium channels. Co-activation of TPC1 and InsP3R3 is required for generation of cholinergic calcium signals and downstream secretion of hydrated mucus, which culminates in the flushing of the colonic stem cell niche.


2021 ◽  
Author(s):  
Seongtak Kang ◽  
Jiho Park ◽  
Kyungsoo Kim ◽  
Sung-Ho Lim ◽  
Joon Ho Choi ◽  
...  

In vivo calcium imaging is a standard neuroimaging technique that allows the simultaneous observation of neuronal population activity. In calcium imaging, the activation signals of neurons are key information for the investigation of neural circuits. For efficient extraction of the calcium signals of neurons, selective detection of the region of interest (ROI) pixels corresponding to the active subcellular region of the target neuron is essential. However, current ROI detection methods for calcium imaging data exhibit relatively low extraction performance from neurons with a low signal-to-noise power ratio (SNR). This is problematic because a low SNR is unavoidable in many biological experimental settings. Therefore, we propose an iterative correlation-based ROI detection (ICoRD) method that robustly extracts the calcium signal of the target neuron from a calcium imaging series with severe noise. ICoRD extracts calcium signals closer to the ground truth than the conventional method from simulated calcium imaging data in all low SNR ranges. Additionally, this study confirmed that ICoRD robustly extracts activation signals against noise, even within in vivo environments. ICoRD showed reliable detection from neurons with low SNR and sparse activation, which were not detected by the conventional methods. ICoRD will facilitate our understanding of neural circuit activity by providing significantly improved ROI detection from noisy images.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3534
Author(s):  
Christiane Then ◽  
Fanny Bellegarde ◽  
Geoffrey Schivre ◽  
Alexandre Martinière ◽  
Jean-Luc Macia ◽  
...  

Alighting aphids probe a new host plant by intracellular test punctures for suitability. These induce immediate calcium signals that emanate from the punctured sites and might be the first step in plant recognition of aphid feeding and the subsequent elicitation of plant defence responses. Calcium is also involved in the transmission of non-persistent plant viruses that are acquired by aphids during test punctures. Therefore, we wanted to determine whether viral infection alters calcium signalling. For this, calcium signals triggered by aphids were imaged on transgenic Arabidopsis plants expressing the cytosolic FRET-based calcium reporter YC3.6-NES and infected with the non-persistent viruses cauliflower mosaic (CaMV) and turnip mosaic (TuMV), or the persistent virus, turnip yellows (TuYV). Aphids were placed on infected leaves and calcium elevations were recorded by time-lapse fluorescence microscopy. Calcium signal velocities were significantly slower in plants infected with CaMV or TuMV and signal areas were smaller in CaMV-infected plants. Transmission tests using CaMV-infected Arabidopsis mutants impaired in pathogen perception or in the generation of calcium signals revealed no differences in transmission efficiency. A transcriptomic meta-analysis indicated significant changes in expression of receptor-like kinases in the BAK1 pathway as well as of calcium channels in CaMV- and TuMV-infected plants. Taken together, infection with CaMV and TuMV, but not with TuYV, impacts aphid-induced calcium signalling. This suggests that viruses can modify plant responses to aphids from the very first vector/host contact.


2021 ◽  
Author(s):  
Sara M. Zarate ◽  
Taylor E. Huntington ◽  
Pooneh Bagher ◽  
Rahul Srinivasan

Aging-related impairment of the blood brain barrier (BBB) and neurovascular unit (NVU) increases risk for neurodegeneration. Among the various cells participating in BBB and NVU function, spontaneous Ca2+ signals in astrocytic endfeet are crucial for maintaining BBB and NVU integrity. To assess if aging is associated with changes in spontaneous Ca2+ signals within astrocytic endfeet of the dorsolateral striatum (DLS), we expressed a genetically encoded Ca2+ indicator, Lck-GCaMP6f in DLS astrocytes of young (3-4 month) and aging (20-24 month) mice. Compared to young mice, endfeet in the DLS of aging mice demonstrated a decrease in calreticulin (CALR) expression, and dramatic alterations in the dynamics of endfoot membrane-associated and mitochondrial Ca2+ signals. While young mice required both extracellular and endoplasmic reticulum (ER) Ca2+ sources for generating endfoot Ca2+ signals, aging mice showed exclusive dependence on ER Ca2+. These data suggest that aging is associated with significant changes in Ca2+ buffers and Ca2+ signals within astrocytic endfeet, which has important implications for understanding mechanisms involved in aging-related impairment of the BBB and NVU.


2021 ◽  
pp. 0271678X2110454
Author(s):  
Yuhei Takado ◽  
Hiroyuki Takuwa ◽  
Kazuaki Sampei ◽  
Takuya Urushihata ◽  
Manami Takahashi ◽  
...  

To assess if magnetic resonance spectroscopy (MRS)-measured Glutamate (Glu) and GABA reflect excitatory and inhibitory neural activities, respectively, we conducted MRS measurements along with two-photon mesoscopic imaging of calcium signals in excitatory and inhibitory neurons of living, unanesthetized mice. For monitoring stimulus-driven activations of a brain region, MRS signals and mesoscopic neural activities were measured during two consecutive sessions of 15-min prolonged sensory stimulations. In the first session, putative excitatory neuronal activities were increased, while inhibitory neuronal activities remained at the baseline level. In the second half, while excitatory neuronal activities remained elevated, inhibitory neuronal activities were significantly enhanced. We assessed regional neurochemical statuses by measuring MRS signals, which were overall in accordance with the neural activities, and neuronal activities and neurochemical statuses in a mouse model of Dravet syndrome under resting condition. Mesoscopic assessments showed that activities of inhibitory neurons in the cortex were diminished relative to wild-type mice in contrast to spared activities of excitatory neurons. Consistent with these observations, the Dravet model exhibited lower concentrations of GABA than wild-type controls. Collectively, the current investigations demonstrate that MRS-measured Glu and GABA can reflect spontaneous and stimulated activities of neurons producing and releasing these neurotransmitters in an awake condition.


2021 ◽  
Author(s):  
Sabrina Tazerart ◽  
Maxime G. Blanchard ◽  
Soledad Miranda-Rottmann ◽  
Diana E. Mitchell ◽  
Bruno Navea Pina ◽  
...  

AbstractDendritic spines are the main receptacles of excitatory information in the brain. Their particular morphology, with a small head connected to the dendrite by a slender neck, has inspired theoretical and experimental work to understand how these structural features affect the processing, storage and integration of synaptic inputs in pyramidal neurons (PNs).The activation of glutamate receptors in spines triggers a large voltage change as well as calcium signals at the spine head. Thus, voltage-gated and calcium-activated potassium channels located in the spine head likely play a key role in synaptic transmission. Here we study the presence and function of large conductance calcium-activated potassium (BK) channels in spines from layer 5 PNs. We find that BK channels are localized to dendrites and spines regardless of their size, but their activity can only be detected in spines with small head volumes (≤ 0.09 µm3), which reduces the amplitude of two-photon (2P) uncaging (u) excitatory postsynaptic potentials (EPSPs) recorded at the soma. In addition, we find that calcium signals in spines with small head volumes are significantly larger than those observed in spines with larger head volumes. In accordance with our experimental data, numerical simulations predict that synaptic inputs impinging onto spines with small head volumes generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with bigger head volumes, which are sufficient to activate spine BK channels. These results show that BK channels are selectively activated in small-headed spines, suggesting a new level of dendritic spine-mediated regulation of synaptic processing, integration, and plasticity in cortical PNs.


Sign in / Sign up

Export Citation Format

Share Document