Connections between area 3b of the somatosensory cortex and subdivisions of the ventroposterior nuclear complex and the anterior pulvinar nucleus in squirrel monkeys

1990 ◽  
Vol 292 (1) ◽  
pp. 83-102 ◽  
Author(s):  
C. G. Cusick ◽  
H. J. Gould
1989 ◽  
Vol 62 (3) ◽  
pp. 711-722 ◽  
Author(s):  
T. Allison ◽  
G. McCarthy ◽  
C. C. Wood ◽  
P. D. Williamson ◽  
D. D. Spencer

1. The anatomic generators of human median nerve somatosensory evoked potentials (SEPs) in the 40 to 250-ms latency range were investigated in 54 patients by means of cortical-surface and transcortical recordings obtained during neurosurgery. 2. Contralateral stimulation evoked three groups of SEPs recorded from the hand representation area of sensorimotor cortex: P45-N80-P180, recorded anterior to the central sulcus (CS) and maximal on the precentral gyrus; N45-P80-N180, recorded posterior to the CS and maximal on the postcentral gyrus; and P50-N90-P190, recorded near and on either side of the CS. 3. P45-N80-P180 inverted in polarity to N45-P80-N180 across the CS but was similar in polarity from the cortical surface and white matter in transcortical recordings. These spatial distributions were similar to those of the short-latency P20-N30 and N20-P30 potentials described in the preceding paper, suggesting that these long-latency potentials are generated in area 3b of somatosensory cortex. 4. P50-N90-P190 was largest over the anterior one-half of somatosensory cortex and did not show polarity inversion across the CS. This spatial distribution was similar to that of the short-latency P25-N35 potentials described in the preceding paper and, together with our and Goldring et al. 1970; Stohr and Goldring 1969 transcortical recordings, suggest that these long-latency potentials are generated in area 1 of somatosensory cortex. 5. SEPs of apparently local origin were recorded from several regions of sensorimotor cortex to stimulation of the ipsilateral median nerve. Surface and transcortical recordings suggest that the ipsilateral potentials are generated not in area 3b, but rather in other regions of sensorimotor cortex perhaps including areas 4, 1, 2, and 7. This spatial distribution suggests that the ipsilateral potentials are generated by transcallosal input from the contralateral hemisphere. 6. Recordings from the periSylvian region were characterized by P100 and N100, recorded above and below the Sylvian sulcus (SS) respectively. This distribution suggests a tangential generator located in the upper wall of the SS in the second somatosensory area (SII). In addition, N125 and P200, recorded near and on either side of the SS, suggest a radial generator in a portion of SII located in surface cortex above the SS. 7. In comparison with the short-latency SEPs described in the preceding paper, the long-latency potentials were more variable and were more affected by intraoperative conditions.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0128462 ◽  
Author(s):  
Yevhen Hlushchuk ◽  
Cristina Simões-Franklin ◽  
Cathy Nangini ◽  
Riitta Hari

2018 ◽  
Vol 115 (16) ◽  
pp. 4258-4263 ◽  
Author(s):  
Chia-Chi Liao ◽  
Jamie L. Reed ◽  
Hui-Xin Qi ◽  
Eva K. Sawyer ◽  
Jon H. Kaas

Months after the occurrence of spinal cord dorsal column lesions (DCLs) at the cervical level, neural responses in the hand representation of somatosensory area 3b hand cortex recover, along with hand use. To examine whether the second-order spinal cord pathway contributes to this functional recovery, we injected cholera toxin subunit B (CTB) into the hand representation in the cuneate nucleus (Cu) to label the spinal cord neurons, and related results to cortical reactivation in four squirrel monkeys (Saimiri boliviensis) at least 7 months after DCL. In two monkeys with complete DCLs, few CTB-labeled neurons were present below the lesion, and few neurons in the affected hand region in area 3b responded to touch on the hand. In two other cases with large but incomplete DCLs, CTB-labeled neurons were abundant below the lesion, and the area 3b hand cortex responded well to tactile stimulation in a roughly somatotopic organization. The proportions of labeled neurons in the spinal cord hand region reflected the extent of cortical reactivation to the hand. Comparing monkeys with short and long recovery times suggests that the numbers of labeled neurons below the lesion increase with time following incomplete DCLs (<95%) but decrease with time after nearly complete DCLs (≥95%). Taken together, these results suggest that the second-order spinal cord pathway facilitates cortical reactivation, likely through the potentiation of persisting tactile inputs from the hand to the Cu over months of postlesion recovery.


1996 ◽  
Vol 76 (5) ◽  
pp. 3382-3403 ◽  
Author(s):  
F. Tremblay ◽  
S. A. Ageranioti-Belanger ◽  
C. E. Chapman

1. The discharge patterns of 359 single neurons in the hand representation of primary somatosensory cortex (SI) of two monkeys (Macaca mulatta) were recorded during the performance of a passive texture discrimination task with the contralateral hand (104 in area 3b, 149 in area 1, and 106 in area 2). Three nyloprint surfaces were mounted on a drum that was rotated under the digit tips. One surface was entirely smooth, whereas the other two were smooth over the first half and rough over the second half (smooth/ rough) (raised dots, 1 mm high and 1 mm diam, in a rectangular array; spatial period of 3 mm across the rows and columns for most recordings; 9 mm between columns for selected recordings). The monkeys were trained to distinguish between the smooth and smooth/rough surfaces. After the surface presentation, the monkey indicated the texture of the second half of the surface by pushing or pulling, respectively, on a lever with the other arm. For most recordings an average tangential speed of 49 mm/s was tested. For selected recordings motor speed was incremented (63, 75, or 89 mm/s). 2. Two hundred eighty-three neurons had a cutaneous receptive field (RF) on the hand (96 in area 3b, 120 in area 1, and 67 in area 2). Thirty-five neurons had a deep RF (4 in area 3b, 15 in area 1, and 16 in area 2). Seven neurons had mixed cutaneous and deep RFs (4 in area 1, 3 in area 2). Thirty-four neurons had no identifiable RF (4 in area 3b, 10 in area 1, and 20 in area 2). 3. The discharge of 185 of 359 neurons was significantly modulated during the presentation of one or both surfaces compared with the discharge at rest. Cells with a cutaneous RF that included part or all of the distal phalangeal pads of the digits used in the task (usually digits III and IV) were more likely to be modulated during surface presentation (132 of 179, 74%) than those with a cutaneous RF not in contact with the surfaces (24 of 104, 23%). The remaining neurons (mixed, deep, or no RF) were also infrequently modulated (29 of 76, 38%). 4. Of the 185 modulated units, 118 cells were classified as texture related because there was a significant difference in the discharge rate evoked by the smooth/rough and smooth surfaces. Cells with a cutaneous RF that included the digital pads in contact with the surfaces were frequently texture related (100 of 132, 76%). Texture sensitivity was less frequently observed in the remaining modulated neurons (18 of 53, 34%: cutaneous RF not in contact with the surfaces, deep RF, mixed cutaneous and deep RF, no identifiable RF). 5. Texture-related neurons were found in areas 3b, 1, and 2. Two patterns of texture-related responses were observed in the 100 cutaneous units with an RF in contact with the surfaces. Thirty-one units were classified as showing a phasic response at the time the digits encountered the leading edge of the rough half of the surface. Fifty-eight cells were classified as phasic-tonic (or sometimes tonic at the slowest motor speeds) because the response lasted for the duration of the presentation of the rough portion of the surface. The remaining 11 neurons could not be readily classified into one or the other category and, indeed, generally showed clear texture-related responses only at higher motor speeds (> 49 mm/s, 9 of 11). 6. Speed sensitivity was systematically evaluated in 41 of 100 texture-related units with a cutaneous RF in contact with the surfaces. The discharge of 66% of the units (27 of 41) varied significantly with the speed of surface presentation, with discharge increasing at higher speeds. Speed sensitivity was found in all three cytoarchitectonic areas (6 of 6 cells in area 3b, 11 of 22 in area 1, and 10 of 13 in area 2). 7. Contact force was also systematically monitored in these experiments (69 of 100 texture-related cells with a cutaneous RF in contact with the surfaces). Linear regression analyses indicated than 22% (15 of 69) of the texture-related units were sensitive to contact force (13


Sign in / Sign up

Export Citation Format

Share Document