Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity

1989 ◽  
Vol 62 (3) ◽  
pp. 711-722 ◽  
Author(s):  
T. Allison ◽  
G. McCarthy ◽  
C. C. Wood ◽  
P. D. Williamson ◽  
D. D. Spencer

1. The anatomic generators of human median nerve somatosensory evoked potentials (SEPs) in the 40 to 250-ms latency range were investigated in 54 patients by means of cortical-surface and transcortical recordings obtained during neurosurgery. 2. Contralateral stimulation evoked three groups of SEPs recorded from the hand representation area of sensorimotor cortex: P45-N80-P180, recorded anterior to the central sulcus (CS) and maximal on the precentral gyrus; N45-P80-N180, recorded posterior to the CS and maximal on the postcentral gyrus; and P50-N90-P190, recorded near and on either side of the CS. 3. P45-N80-P180 inverted in polarity to N45-P80-N180 across the CS but was similar in polarity from the cortical surface and white matter in transcortical recordings. These spatial distributions were similar to those of the short-latency P20-N30 and N20-P30 potentials described in the preceding paper, suggesting that these long-latency potentials are generated in area 3b of somatosensory cortex. 4. P50-N90-P190 was largest over the anterior one-half of somatosensory cortex and did not show polarity inversion across the CS. This spatial distribution was similar to that of the short-latency P25-N35 potentials described in the preceding paper and, together with our and Goldring et al. 1970; Stohr and Goldring 1969 transcortical recordings, suggest that these long-latency potentials are generated in area 1 of somatosensory cortex. 5. SEPs of apparently local origin were recorded from several regions of sensorimotor cortex to stimulation of the ipsilateral median nerve. Surface and transcortical recordings suggest that the ipsilateral potentials are generated not in area 3b, but rather in other regions of sensorimotor cortex perhaps including areas 4, 1, 2, and 7. This spatial distribution suggests that the ipsilateral potentials are generated by transcallosal input from the contralateral hemisphere. 6. Recordings from the periSylvian region were characterized by P100 and N100, recorded above and below the Sylvian sulcus (SS) respectively. This distribution suggests a tangential generator located in the upper wall of the SS in the second somatosensory area (SII). In addition, N125 and P200, recorded near and on either side of the SS, suggest a radial generator in a portion of SII located in surface cortex above the SS. 7. In comparison with the short-latency SEPs described in the preceding paper, the long-latency potentials were more variable and were more affected by intraoperative conditions.

1989 ◽  
Vol 62 (3) ◽  
pp. 694-710 ◽  
Author(s):  
T. Allison ◽  
G. McCarthy ◽  
C. C. Wood ◽  
T. M. Darcey ◽  
D. D. Spencer ◽  
...  

1. The anatomic generators of human median nerve somatosensory evoked potentials (SEPs) in the 40 to 250-ms latency range were investigated in 54 patients by means of cortical-surface and transcortical recordings obtained during neurosurgery. 2. Contralateral stimulation evoked three groups of SEPs recorded from the hand representation area of sensorimotor cortex: P45-N80-P180, recorded anterior to the central sulcus (CS) and maximal on the precentral gyrus; N45-P80-N180, recorded posterior to the CS and maximal on the postcentral gyrus; and P50-N90-P190, recorded near and on either side of the CS. 3. P45-N80-P180 inverted in polarity to N45-P80-N180 across the CS but was similar in polarity from the cortical surface and white matter in transcortical recordings. These spatial distributions were similar to those of the short-latency P20-N30 and N20-P30 potentials described in the preceding paper, suggesting that these long-latency potentials are generated in area 3b of somatosensory cortex. 4. P50-N90-P190 was largest over the anterior one-half of somatosensory cortex and did not show polarity inversion across the CS. This spatial distribution was similar to that of the short-latency P25-N35 potentials described in the preceding paper and, together with our and Goldring et al. 1970; Stohr and Goldring 1969 transcortical recordings, suggest that these long-latency potentials are generated in area 1 of somatosensory cortex. 5. SEPs of apparently local origin were recorded from several regions of sensorimotor cortex to stimulation of the ipsilateral median nerve. Surface and transcortical recordings suggest that the ipsilateral potentials are generated not in area 3b, but rather in other regions of sensorimotor cortex perhaps including areas 4, 1, 2, and 7. This spatial distribution suggests that the ipsilateral potentials are generated by transcallosal input from the contralateral hemisphere. 6. Recordings from the periSylvian region were characterized by P100 and N100, recorded above and below the Sylvian sulcus (SS) respectively. This distribution suggests a tangential generator located in the upper wall of the SS in the second somatosensory area (SII). In addition, N125 and P200, recorded near and on either side of the SS, suggest a radial generator in a portion of SII located in surface cortex above the SS. 7. In comparison with the short-latency SEPs described in the preceding paper, the long-latency potentials were more variable and were more affected by intraoperative conditions.(ABSTRACT TRUNCATED AT 400 WORDS)


1991 ◽  
Vol 66 (1) ◽  
pp. 64-82 ◽  
Author(s):  
T. Allison ◽  
C. C. Wood ◽  
G. McCarthy ◽  
D. D. Spencer

1. To clarify the generators of human short-latency somatosensory evoked potentials (SEPs) thought to arise in sensorimotor cortex, we studied the effects on SEPs of surgical excision of somatosensory or motor cortex in humans and monkeys. 2. Normal median nerve SEPs (P20-N30, N20-P30, and P25-N35) were recorded from the cortical surface of a patient (G13) undergoing a cortical excision for relief of focal seizures. All SEPs were abolished both acutely and chronically after excision of the hand area of somatosensory cortex. Similarly, excision of the hand area of somatosensory cortex abolished corresponding SEPs (P10-N20, N10-P20, and P12-N25) in monkeys. Excision of the crown of monkey somatosensory cortex abolished P12-N25 while leaving P10-N20 and N10-P20 relatively unaffected. 3. After excision of the hand area of motor cortex, all SEPs were present when recorded from the cortical surface of a patient (W1) undergoing a cortical excision for relief of focal seizures. Similarly, all SEPs were present in monkeys after excision of the hand area of motor cortex. 4. Although all SEPs were present after excision of motor cortex in monkeys, variable changes were observed in SEPs after the excisions. However, these changes were not larger than the changes observed after excision of parietal cortex posterior to somatosensory cortex. We concluded that the changes were not specific to motor cortex excision. 5. These results support two major conclusions. 1) Median nerve SEPs recorded from sensorimotor cortex are produced by generators in two adjacent regions of somatosensory cortex: a tangentially oriented generator in area 3b, which produces P20-N30 (human) and P10-N20 (monkey) [recorded anterior to the central sulcus (CS)] and N20-P30 (human) and N10-P20 (monkey) posterior to the CS; and a radially oriented generator in area 1, which produces P25-N35 (human) and P12-N25 (monkey) recorded from the postcentral gyrus near the CS. 2) Motor cortex makes little or no contribution to these potentials.


1997 ◽  
Vol 77 (1) ◽  
pp. 522-526 ◽  
Author(s):  
C. E. Schroeder ◽  
S. Seto ◽  
P. E. Garraghty

Schroeder, C. E., S. Seto, and P. E. Garraghty. Emergence of radial nerve dominance in median nerve cortex after median nerve transection in an adult squirrel monkey. J. Neurophysiol. 77: 522–526, 1997. Throughout the glabrous representation in Area 3b, electrical stimulation of the dominant (median or ulnar) input produces robust, short-latency excitation, evident as a net extracellular “sink” in the Lamina 4 current source density (CSD) accompanied by action potentials. Stimulation of the collocated nondominant (radial nerve) input produces a subtle short-latency response in the Lamina 4 CSD unaccompanied by action potentials and followed by a clear excitatory response 12–15 ms later. Laminar response profiles for both inputs have a “feedforward” pattern, with initial activation in Lamina 4, followed by extragranular laminae. Such corepresentation of nondominant radial nerve inputs with the dominant (median or ulnar nerve) inputs in the glabrous hand surface representation provides a likely mechanism for reorganization after median nerve section in adult primates. To investigate this, we conducted repeated recordings using an implanted linear multi-electrode array straddling the cortical laminae at a site in “median nerve cortex” (i.e., at a site with a cutaneous receptive field on the volar surface of D2 and thus with its dominant afferent input conveyed by the median nerve) in an adult squirrel monkey. We characterized the baseline responses to median, radial, and ulnar nerve stimulation. We then cut the median nerve and semi-chronically monitored radial nerve, ulnar nerve and median nerve (proximal stump) evoked responses. The radial nerve response in median nerve cortex changed progressively during the weeks after median nerve transection, ultimately assuming the characteristics of the dominant nerve profile. During this time, median, and ulnar nerve profiles displayed little or no change.


1993 ◽  
Vol 70 (6) ◽  
pp. 2241-2250 ◽  
Author(s):  
M. K. Floeter ◽  
A. Lev-Tov

1. The excitation of lumbar motoneurons by reticulospinal axons traveling in the medial longitudinal fasciculus (MLF) was investigated in the newborn rat using intracellular recordings from lumbar motoneurons in an in vitro preparation of the brain stem and spinal cord. The tracer DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine) was introduced into the MLF of 6-day-old littermate rats that had been fixed with paraformaldehyde to evaluate the anatomic extent of this developing pathway. 2. Fibers labeled from the MLF by DiI were present in the cervical ventral and lateral white matter and a smaller number of labeled fibers extended to the lumbar enlargement. Patches of sparse terminal labeling were seen in the lumbar ventral gray. 3. In the in vitro preparation of the brain stem and spinal cord, MLF stimulation excited motoneurons through long-latency pathways in most motoneurons and through both short-(< 40 ms) and long-latency connections in 16 of 40 motoneurons studied. Short- and longer-latency components of the excitatory response were evaluated using mephenesin to reduce activity in polysynaptic pathways. 4. Paired-pulse stimulation of the MLF revealed a modest temporal facilitation of the short-latency excitatory postsynaptic potential (EPSP) at short interstimulus intervals (20–200 ms). Trains of stimulation at longer interstimulus intervals (1–30 s) resulted in a depression of EPSP amplitude. The time course of the synaptic depression was compared with that found in EPSPs resulting from paired-pulse stimulation of the dorsal root and found to be comparable. 5. The short-latency MLF EPSP was reversibly blocked by 6-cyano-7-nitroquinoxaline (CNQX), an antagonist of non-N-methyl-D-aspartate glutamate receptors, with a small CNQX-resistant component. Longer-latency components of the MLF EPSP were also blocked by CNQX, and some late components of the PSP were sensitive to strychnine. MLF activation of multiple polysynaptic pathways in the spinal cord is discussed.


2013 ◽  
Vol 119 (4) ◽  
pp. 853-863 ◽  
Author(s):  
Stephan B. Sobottka ◽  
Tobias Meyer ◽  
Matthias Kirsch ◽  
Edmund Koch ◽  
Ralf Steinmeier ◽  
...  

Object Intraoperative optical imaging (IOI) is an experimental technique used for visualizing functional brain areas after surgical exposure of the cerebral cortex. This technique identifies areas of local changes in blood volume and oxygenation caused by stimulation of specific brain functions. The authors describe a new IOI method, including innovative data analysis, that can facilitate intraoperative functional imaging on a routine basis. To evaluate the reliability and validity of this approach, they used the new IOI method to demonstrate visualization of the median nerve area of the somatosensory cortex. Methods In 41 patients with tumor lesions adjacent to the postcentral gyrus, lesions were surgically removed by using IOI during stimulation of the contralateral median nerve. Optical properties of the cortical tissue were measured with a sensitive camera system connected to a surgical microscope. Imaging was performed by using 9 cycles of alternating prolonged stimulation and rest periods of 30 seconds. Intraoperative optical imaging was based on blood volume changes detected by using a filter at an isosbestic wavelength (λ = 568 nm). A spectral analysis algorithm was used to improve computation of the activity maps. Movement artifacts were compensated for by an elastic registration algorithm. For validation, intraoperative conduction of the phase reversal over the central sulcus and postoperative evaluation of the craniotomy site were used. Results The new method and analysis enabled significant differentiation (p < 0.005) between functional and nonfunctional tissue. The identification and visualization of functionally intact somatosensory cortex was highly reliable; sensitivity was 94.4% and specificity was almost 100%. The surgeon was provided with a 2D high-resolution activity map within 12 minutes. No method-related side effects occurred in any of the 41 patients. Conclusions The authors' new approach makes IOI a contact-free and label-free optical technique that can be used safely in a routine clinical setup. Intraoperative optical imaging can be used as an alternative to other methods for the identification of sensory cortex areas and offers the added benefit of a high-resolution map of functional activity. It has great potential for visualizing and monitoring additional specific functional brain areas such as the visual, motor, and speech cortex. A prospective national multicenter clinical trial is currently being planned.


2000 ◽  
Vol 93 (5) ◽  
pp. 774-783 ◽  
Author(s):  
Maxwell Boakye ◽  
Sean C. Huckins ◽  
Nikolaus M. Szeverenyi ◽  
Bobby I. Taskey ◽  
Charles J. Hodge

Object. Functional magnetic resonance (fMR) imaging was used to determine patterns of cerebral blood flow changes in the somatosensory cortex that result from median nerve stimulation (MNS).Methods. Ten healthy volunteers underwent stimulation of the right median nerve at frequencies of 5.1 Hz (five volunteers) and 50 Hz (five volunteers). The left median nerve was stimulated at frequencies of 5.1 Hz (two volunteers) and 50 Hz (five volunteers). Tactile stimulation (with a soft brush) of the right index finger was also applied (three volunteers). Functional MR imaging data were transformed into Talairach space coordinates and averaged by group. Results showed significant activation (p < 0.001) in the following regions: primary sensorimotor cortex (SMI), secondary somatosensory cortex (SII), parietal operculum, insula, frontal cortex, supplementary motor area, and posterior parietal cortices (Brodmann's Areas 7 and 40). Further analysis revealed no statistically significant difference (p > 0.05) between volumes of cortical activation in the SMI or SII resulting from electrical stimuli at 5.1 Hz and 50 Hz. There existed no significant differences (p > 0.05) in cortical activity in either the SMI or SII resulting from either left- or right-sided MNS. With the exception of the frontal cortex, areas of cortical activity in response to tactile stimulation were anatomically identical to those regions activated by electrical stimulation. In the SMI and SII, activation resulting from tactile stimulation was not significantly different (p > 0.05) from that resulting from electrical stimulation.Conclusions. Electrical stimulation of the median nerve is a reproducible and effective means of activating multiple somatosensory cortical areas, and fMR imaging can be used to investigate the complex network that exists between these areas.


1989 ◽  
Vol 257 (2) ◽  
pp. R410-R421 ◽  
Author(s):  
B. Mallory ◽  
W. D. Steers ◽  
W. C. De Groat

Electrophysiological techniques were used to examine the asynchronous and evoked activity on postganglionic nerves to the urinary bladder in the urethananesthetized rat. Distension of the bladder (0.4-0.6 ml) evoked reflex contractions of the bladder (mean intravesical pressure 28 cmH2O) and efferent firing on postganglionic nerves. Electrical stimulation of afferent and efferent axons in the pelvic nerve elicited short-latency (0.3-11 ms) responses and long-latency (45-170 ms) reflexes on the nerves. The short-latency responses consisted of nonsynaptic axonal volleys with conduction velocities ranging from 0.5 to 11 m/s and synaptic responses with latencies of 6-11 ms. Stimulation of the pelvic nerve elicited late supraspinal reflexes (mean latency 122 +/- 28 ms) in 60% of normal rats and an early reflex (mean latency 56 +/- 5 ms) in 25% of those animals in which a late reflex was also identified. Early reflexes (mean latency 50 +/- 9 ms) were elicited in 100% of chronic spinal animals. The conduction time for the afferent and efferent limbs of the reflexes was calculated to be 7 and 58 ms, respectively, with a central delay of 57 ms for the late and less than 5 ms for the early reflex. It is concluded that sacral parasympathetic input to the urinary bladder of the rat is mediated by supraspinal and spinal reflex pathways. It is likely that in normal animals the late-occurring supraspinal reflex mediates micturition. The significance of the spinal reflex in the normal animals is uncertain; however, this reflex is essential for the generation of automatic micturition in chronic spinal preparations.


1991 ◽  
Vol 65 (5) ◽  
pp. 1227-1241 ◽  
Author(s):  
I. Nose ◽  
H. Higashi ◽  
H. Inokuchi ◽  
S. Nishi

1. To investigate postsynaptic potentials (PSPs), we made intracellular recordings from neurons of the amygdaloid central nucleus in slices from the guinea pig and rat brains maintained in vitro. The results from guinea pigs and rats were very similar. 2. In the presence of bicuculline (20 microM), focal electrical stimulation of the amygdaloid basal nucleus with low intensities elicited short-latency excitatory PSPs (EPSPs) followed by long-latency EPSPs. The short-latency EPSP was selectively blocked by 6-cyano-7-nitroquinoxaline-2,3-dion (CNQX; 10-20 microM). The long-latency EPSP was preferentially abolished by D,L-2-amino-5-phosphonovaleric acid (D,L-APV; 40 microM) and was augmented by removal of extracellular Mg2+. The compound EPSP reversed at -4 mV, which was close to -1 mV, the reversal potential for pressure-ejected glutamate (Glu). 3. When the intensity of the focal stimulation was increased in the presence of bicuculline (20 microM), CNQX (20 microM), and D,L-APV (50 microM), a second EPSP with a short latency and a prolonged duration could be evoked in approximately 65% of the neurons. The EPSPs were reversibly blocked by d-tubocurarine (50 microM) or hexamethonium (200 microM) but were unaffected by atropine (1 microM) or a 5-hydroxytryptamine type 3 receptor antagonist, ICS-205930 (5-10 microM). In these neurons, acetylcholine (ACh; 1-3 mM) caused a depolarization, associated with a decreased input resistance. 4. In the presence of CNQX (20 microM) and D,L-APV (50 microM), single focal stimulation of the dorsolateral subdivision in the central nucleus with low intensities elicited a depolarizing inhibitory PSP (IPSP). The IPSP was reversibly abolished by bicuculline (20-40 microM). The reversal potential (-63 mV) for the IPSP was similar to the reversal potential (-61 mV) for the response to gamma-aminobutyric acid (GABA) applied by pressure ejection. 5. In the presence of bicuculline (20-40 microM) and CNQX (20 microM), a repetitive focal stimulus with high intensities delivered to the dorsolateral subdivision produced a hyperpolarizing PSP followed by a slow depolarization in most neurons. Of putative inhibitory amino acid transmitters, glycine (Gly; 3 mM) produced only a hyperpolarization, associated with a decrease in input resistance. Strychnine (1-2 microM) reversibly blocked both the Gly hyperpolarization and the synaptically evoked hyperpolarization. The reversal potential of -81 mV for the hyperpolarizing PSP was close to -82 mV for the Gly hyperpolarization. The reversal potential for the Gly response was shifted to less negative values by increasing the external K+ concentration or decreasing the extracellular Cl- concentration.(ABSTRACT TRUNCATED AT 400 WORDS)


1959 ◽  
Vol 196 (6) ◽  
pp. 1163-1167 ◽  
Author(s):  
Shaul Feldman ◽  
Charles S. Van der Heide ◽  
Robert W. Porter

The distribution and some properties of the evoked potentials in the hypothalamus from stimulation of the sciatic nerve were investigated in 60 cats. In the posterior and lateral hypothalamus biphasic positive-negative responses of 7–10 msec. latency were found, while in the anterior and medial hypothalamus the stimuli evoked monophasic negative waves of 20–35 msec. latency. The threshold of activation of the hypothalamic potentials corresponded to the upper range of activation of group A fibers in the sciatic nerve. The hypothalamic evoked potentials had a very prolonged recovery time on double stimulation, were sensitive to pentobarbital even to a greater degree than the evoked potentials in the midbrain reticular formation, and were abolished by high frequency stimulation of the midbrain reticular formation. The long latency potentials in the hypothalamus were similar to those evoked in the midbrain reticular formation, while the short latency potentials had properties similar to those of the lemniscal potentials. This fact suggested that the short latency potentials signaled the arrival of impulses from lemniscal collaterals.


1996 ◽  
Vol 75 (3) ◽  
pp. 1271-1282 ◽  
Author(s):  
S. H. Wu ◽  
J. B. Kelly

1. The synaptic pharmacology of the dorsal nucleus of the lateral lemniscus (DNLL) of the rat was investigated in a brain slice preparation of the auditory midbrain. The brain slice was cut in the coronal plane and placed in a small recording chamber where warm, oxygenated saline was continuously perfused over and underneath the tissue. Intracellular recordings were made with glass microelectrodes filled with 4 M potassium acetate. Synaptic potentials were elicited by electrical stimulation of the lateral lemniscus or commissure of Probst and pharmacological effects were tested by bath application of amino acid agonists and antagonists. 2. The cells in DNLL were challenged with the excitatory amino acid (EAA) agonists, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), N-methyl-D-aspartic acid (NMDA) in 0 Mg2+, and L-glutamate. Each of these caused a depolarization of the cell membrane, a reduction in cell membrane resistance, and the onset of spontaneous firing. 3. Short-latency excitatory postsynaptic potentials (EPSPs) were evoked by stimulation of the lateral lemniscus in 77% of the neurons tested. The mean latency to initial depolarization was 0.9 ms. A single spike with relatively constant latency (mean 1.5 ms) was typically elicited when the strength of lemniscal stimulation was increased. A longer-latency EPSP (mean 2.9 ms) was seen in 34% of the neurons tested either with the slice in normal saline or after pharmacological block of the earlier, short-latency EPSP. The long-latency EPSP was followed by a single spike of multiple spikes with highly variable latencies (range 3.2-24 ms). In 28% of the neurons tested, both early and late EPSPs were observed in response to stimulation of a single location on the lateral lemniscus. 4. Stimulation of the commissure of Probst elicited short-latency EPSPs (mean 0.9 ms) in 37% of the neurons tested. Longer-latency EPSPs (mean 3.0 ms) were found in only 3% of the neurons in response to commissural stimulation. 5. The nonspecific EAA antagonist kynurenic acid blocked both short-and long-latency EPSPs evoked by either lemniscal or commissural stimulation. The non-NMDA antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), at very low concentrations, blocked the short-latency EPSPs but had no effect on the longer-latency EPSPs. The short-latency EPSPs were unaffected by the NMDA antagonist D,L-2-amino-5-phosphonovaleric acid (APV). In contrast, the longer-latency EPSPs were blocked by APV, but never by CNQX. 6. DNLL neurons were affected by the inhibitory amino acid agonists gamma-aminobutyric acid (GABA) and glycine. The membrane resistance of the neurons was decreased by GABA and glycine in a solution of either normal or calcium-free saline in a concentration-dependent manner. 7. Inhibitory postsynaptic potentials (IPSPs) were elicited by stimulation of the lateral lemniscus in 53% of the neurons and the commissure of the Probst in 18% of the neurons tested. The mean latencies were 1.0 and 0.9 ms, respectively. The reversal potentials of the IPSPs were around -70 mV. 8. The IPSPs evoked by stimulation of the lateral lemniscus were blocked by the glycine receptor antagonist strychnine, but not by the GABA receptor antagonist bicuculline, whereas the IPSPs elicited by stimulation of the commissure of Probst were blocked by bicuculline but not strychnine.


Sign in / Sign up

Export Citation Format

Share Document