Synapses of extrinsic and intrinsic origin made by callosal projection neurons in mouse visual cortex

1993 ◽  
Vol 330 (4) ◽  
pp. 502-513 ◽  
Author(s):  
David Czeiger ◽  
Edward L. White
2013 ◽  
Vol 33 (18) ◽  
pp. 7787-7798 ◽  
Author(s):  
M. K. Arami ◽  
K. Sohya ◽  
A. Sarihi ◽  
B. Jiang ◽  
Y. Yanagawa ◽  
...  

2020 ◽  
Author(s):  
Kenta M Hagihara ◽  
Ayako Wendy Ishikawa ◽  
Yumiko Yoshimura ◽  
Yoshiaki Tagawa ◽  
Kenichi Ohki

Abstract Integration of information processed separately in distributed brain regions is essential for brain functions. This integration is enabled by long-range projection neurons, and further, concerted interactions between long-range projections and local microcircuits are crucial. It is not well known, however, how this interaction is implemented in cortical circuits. Here, to decipher this logic, using callosal projection neurons (CPNs) in layer 2/3 of the mouse visual cortex as a model of long-range projections, we found that CPNs exhibited distinct response properties and fine-scale local connectivity patterns. In vivo 2-photon calcium imaging revealed that CPNs showed a higher ipsilateral (to their somata) eye preference, and that CPN pairs showed stronger signal/noise correlation than random pairs. Slice recordings showed CPNs were preferentially connected to CPNs, demonstrating the existence of projection target-dependent fine-scale subnetworks. Collectively, our results suggest that long-range projection target predicts response properties and local connectivity of cortical projection neurons.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caitlin Siu ◽  
Justin Balsor ◽  
Sam Merlin ◽  
Frederick Federer ◽  
Alessandra Angelucci

AbstractThe mammalian sensory neocortex consists of hierarchically organized areas reciprocally connected via feedforward (FF) and feedback (FB) circuits. Several theories of hierarchical computation ascribe the bulk of the computational work of the cortex to looped FF-FB circuits between pairs of cortical areas. However, whether such corticocortical loops exist remains unclear. In higher mammals, individual FF-projection neurons send afferents almost exclusively to a single higher-level area. However, it is unclear whether FB-projection neurons show similar area-specificity, and whether they influence FF-projection neurons directly or indirectly. Using viral-mediated monosynaptic circuit tracing in macaque primary visual cortex (V1), we show that V1 neurons sending FF projections to area V2 receive monosynaptic FB inputs from V2, but not other V1-projecting areas. We also find monosynaptic FB-to-FB neuron contacts as a second motif of FB connectivity. Our results support the existence of FF-FB loops in primate cortex, and suggest that FB can rapidly and selectively influence the activity of incoming FF signals.


2010 ◽  
Vol 68 ◽  
pp. e267
Author(s):  
Kohei Yoshitake ◽  
Manavu Tohmi ◽  
Ryuichi Hishida ◽  
Takeshi Yagi ◽  
Katsuei Shibuki

Sign in / Sign up

Export Citation Format

Share Document