A comparative study on dynamic stiffness in typical finite element model and multi-body model of C6-C7 cervical spine segment

2015 ◽  
Vol 32 (6) ◽  
pp. e02750 ◽  
Author(s):  
Yawei Wang ◽  
Lizhen Wang ◽  
Chengfei Du ◽  
Zhongjun Mo ◽  
Yubo Fan
2014 ◽  
Vol 566 ◽  
pp. 480-485 ◽  
Author(s):  
Jonas A. Pramudita ◽  
Shunsuke Kikuchi ◽  
Yuji Tanabe

Understanding vehicle occupant responses during real-world rear collision accidents is very important in the development of appropriate safety technologies for neck injury lessening. In this study, numerical analysis of vehicle occupant responses during rear impact were conducted by using a human multi-body model, a seat finite element model and crash accelerations obtained from real-world accidents. The human multi-body model was developed based on the body characteristics of a typical Japanese male, including the outer body geometry, inertial properties of body segments and passive joint characteristics. The seat finite element model was extracted from a detailed car finite element model. A small modification was done to the seat model to deal with the rear impact simulations. The crash accelerations were obtained from the drive recorder database of rear collision accidents occurred in Japan. Several crash accelerations were selected and used as input conditions during the rear impact simulations. Kinematic responses of the occupants during the accidents can be reasonably predicted by the simulations. Furthermore, different level of accelerations leads to different kinematics responses that may cause variation in injury occurrence and injury severity.


Author(s):  
Sean M. Finley ◽  
J. Harley Astin ◽  
Evan Joyce ◽  
Andrew T. Dailey ◽  
Douglas L. Brockmeyer ◽  
...  

OBJECTIVE The underlying biomechanical differences between the pediatric and adult cervical spine are incompletely understood. Computational spine modeling can address that knowledge gap. Using a computational method known as finite element modeling, the authors describe the creation and evaluation of a complete pediatric cervical spine model. METHODS Using a thin-slice CT scan of the cervical spine from a 5-year-old boy, a 3D model was created for finite element analysis. The material properties and boundary and loading conditions were created and model analysis performed using open-source software. Because the precise material properties of the pediatric cervical spine are not known, a published parametric approach of scaling adult properties by 50%, 25%, and 10% was used. Each scaled finite element model (FEM) underwent two types of simulations for pediatric cadaver testing (axial tension and cardinal ranges of motion [ROMs]) to assess axial stiffness, ROM, and facet joint force (FJF). The authors evaluated the axial stiffness and flexion-extension ROM predicted by the model using previously published experimental measurements obtained from pediatric cadaveric tissues. RESULTS In the axial tension simulation, the model with 50% adult ligamentous and annulus material properties predicted an axial stiffness of 49 N/mm, which corresponded with previously published data from similarly aged cadavers (46.1 ± 9.6 N/mm). In the flexion-extension simulation, the same 50% model predicted an ROM that was within the range of the similarly aged cohort of cadavers. The subaxial FJFs predicted by the model in extension, lateral bending, and axial rotation were in the range of 1–4 N and, as expected, tended to increase as the ligament and disc material properties decreased. CONCLUSIONS A pediatric cervical spine FEM was created that accurately predicts axial tension and flexion-extension ROM when ligamentous and annulus material properties are reduced to 50% of published adult properties. This model shows promise for use in surgical simulation procedures and as a normal comparison for disease-specific FEMs.


Author(s):  
Stefan Lammens ◽  
Marc Brughmans ◽  
Jan Leuridan ◽  
Ward Heylen ◽  
Paul Sas

Abstract This paper presents two applications of the RADSER model updating technique (Lammens et al. (1995) and Larsson (1992)). The RADSER technique updates finite element model parameters by solution of a linearised set of equations that optimise the Reduced Analytical Dynamic Stiffness matrix based on Experimental Receptances. The first application deals with the identification of the dynamic characteristics of rubber mounts. The second application validates a coarse finite element model of a subframe of a Volvo 480.


2017 ◽  
Vol 17 (11) ◽  
pp. 1755-1764 ◽  
Author(s):  
Timothy L. Lasswell ◽  
Duane S. Cronin ◽  
John B. Medley ◽  
Parham Rasoulinejad

Sign in / Sign up

Export Citation Format

Share Document