Recent Advances in Phosphorus‐Coordinated Transition Metal Single‐Atom Catalysts for Oxygen Reduction Reaction

ChemNanoMat ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 1601-1610
Author(s):  
Fengzhi Ning ◽  
Xin Wan ◽  
Xiaofang Liu ◽  
Ronghai Yu ◽  
Jianglan Shui
2020 ◽  
Vol 8 (37) ◽  
pp. 19319-19327 ◽  
Author(s):  
Lei Li ◽  
Rao Huang ◽  
Xinrui Cao ◽  
Yuhua Wen

Transition metal single atoms anchored on nitrogen-doped graphene toward the oxygen reduction reaction have been screened.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-51 ◽  
Author(s):  
Junxing Han ◽  
Juanjuan Bian ◽  
Chunwen Sun

Oxygen reduction reaction (ORR) plays significant roles in electrochemical energy storage and conversion systems as well as clean synthesis of fine chemicals. However, the ORR process shows sluggish kinetics and requires platinum-group noble metal catalysts to accelerate the reaction. The high cost, rare reservation, and unsatisfied durability significantly impede large-scale commercialization of platinum-based catalysts. Single-atom electrocatalysts (SAECs) featuring with well-defined structure, high intrinsic activity, and maximum atom efficiency have emerged as a novel field in electrocatalytic science since it is promising to substitute expensive platinum-group noble metal catalysts. However, finely fabricating SAECs with uniform and highly dense active sites, fully maximizing the utilization efficiency of active sites, and maintaining the atomically isolated sites as single-atom centers under harsh electrocatalytic conditions remain urgent challenges. In this review, we summarized recent advances of SAECs in synthesis, characterization, oxygen reduction reaction (ORR) performance, and applications in ORR-related H2O2 production, metal-air batteries, and low-temperature fuel cells. Relevant progress on tailoring the coordination structure of isolated metal centers by doping other metals or ligands, enriching the concentration of single-atom sites by increasing metal loadings, and engineering the porosity and electronic structure of the support by optimizing the mass and electron transport are also reviewed. Moreover, general strategies to synthesize SAECs with high metal loadings on practical scale are highlighted, the deep learning algorithm for rational design of SAECs is introduced, and theoretical understanding of active-site structures of SAECs is discussed as well. Perspectives on future directions and remaining challenges of SAECs are presented.


Author(s):  
Shufang Tian ◽  
Qing Tang

Recent studies in 2D transition-metal-dichalcogenides (TMDs) for electrocatalytic applications have mainly concentrated on MoS2, while the catalytic properties of the majority of TMDs with other metal compositions remain uncovered. This...


2017 ◽  
Vol 5 (20) ◽  
pp. 9842-9851 ◽  
Author(s):  
Zhongxu Wang ◽  
Jingxiang Zhao ◽  
Qinghai Cai ◽  
Fengyu Li

By means of DFT computations we have proposed that Cu-doped MoS2 monolayer is a promising single-atom-catalyst with high efficiency for the ORR.


2021 ◽  
Vol 42 (5) ◽  
pp. 753-761
Author(s):  
Jun-Sheng Jiang ◽  
He-Lei Wei ◽  
Ai-Dong Tan ◽  
Rui Si ◽  
Wei-De Zhang ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 3174-3182
Author(s):  
Siwei Yang ◽  
Chaoyu Zhao ◽  
Ruxin Qu ◽  
Yaxuan Cheng ◽  
Huiling Liu ◽  
...  

In this study, a novel type oxygen reduction reaction (ORR) electrocatalyst is explored using density functional theory (DFT); the catalyst consists of transition metal M and heteroatom N4 co-doped in vacancy fullerene (M–N4–C64, M = Fe, Co, and Ni).


Sign in / Sign up

Export Citation Format

Share Document