Named Data Networking‐based communication model for Internet of Things using energy aware forwarding strategy and smart sleep mode

Author(s):  
Haifa Touati ◽  
Ahmed Aboud ◽  
Brahim Hnich
2022 ◽  
pp. 1-26
Author(s):  
Hengshuo Liang ◽  
Lauren Burgess ◽  
Weixian Liao ◽  
Chao Lu ◽  
Wei Yu

The advance of internet of things (IoT) techniques enables a variety of smart-world systems in energy, transportation, home, and city infrastructure, among others. To provide cost-effective data-oriented service, internet of things search engines (IoTSE) have received growing attention as a platform to support efficient data analytics. There are a number of challenges in designing efficient and intelligent IoTSE. In this chapter, the authors focus on the efficiency issue of IoTSE and design the named data networking (NDN)-based approach for IoTSE. To be specific, they first design a simple simulation environment to compare the IP-based network's performance against named data networking (NDN). They then create four scenarios tailored to study the approach's resilience to address network issues and scalability with the growing number of queries in IoTSE. They implement the four scenarios using ns-3 and carry out extensive performance evaluation to determine the efficacy of the approach concerning network resilience and scalability. They also discuss some remaining issues that need further research.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2906 ◽  
Author(s):  
Muhammad Atif Ur Rehman ◽  
Rehmat Ullah ◽  
Byung-Seo Kim

Information-Centric Networking (ICN) is a paradigm shift from host-to-host Internet Protocol (IP)-based communication to content-based communication. In ICN, the content-retrieval process employs names that are given through different naming schemes such as hierarchical, flat, attribute, and hybrid. Among different ICN architectures, Named-Data Networking (NDN) has gained much interest in the research community and is actively being explored for the Internet of Things (IoT) and sensor networks, and follows a hierarchical naming format. NDN protocol follows a pull-based communication model where the content consumer gets content irrespective of the location of the content provider. The content provider in NDN and sensor networks can be considered to be a distributed database that monitors or controls the environment and caches the sensed data or controls information into their memory. The proposed Name-INtegrated Query (NINQ) framework for NDN-based IoT provides a flexible, expressive, and secure query mechanism that supports content retrieval as well as control and configuration command exchange among various nodes in a smart building. Different use cases are presented in this paper that expand on the behavior of proposed query framework in different scenarios. Simulation results of data collection and exchange of control commands show that proposed query framework significantly improves Interest Satisfaction Rate (ISR), Command Satisfaction Rate (CSR), energy efficiency, and average delay. Moreover, it is evident from the simulation results that proposed query framework significantly reduces the number of transmissions in the network in both data collection and exchange of control command scenarios, which improves the network performance.


2019 ◽  
Vol 148 ◽  
pp. 102445 ◽  
Author(s):  
Amar Abane ◽  
Mehammed Daoui ◽  
Samia Bouzefrane ◽  
Paul Muhlethaler

Sign in / Sign up

Export Citation Format

Share Document