energy transportation
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 63)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
pp. 1-26
Author(s):  
Hengshuo Liang ◽  
Lauren Burgess ◽  
Weixian Liao ◽  
Chao Lu ◽  
Wei Yu

The advance of internet of things (IoT) techniques enables a variety of smart-world systems in energy, transportation, home, and city infrastructure, among others. To provide cost-effective data-oriented service, internet of things search engines (IoTSE) have received growing attention as a platform to support efficient data analytics. There are a number of challenges in designing efficient and intelligent IoTSE. In this chapter, the authors focus on the efficiency issue of IoTSE and design the named data networking (NDN)-based approach for IoTSE. To be specific, they first design a simple simulation environment to compare the IP-based network's performance against named data networking (NDN). They then create four scenarios tailored to study the approach's resilience to address network issues and scalability with the growing number of queries in IoTSE. They implement the four scenarios using ns-3 and carry out extensive performance evaluation to determine the efficacy of the approach concerning network resilience and scalability. They also discuss some remaining issues that need further research.


2021 ◽  
Vol 14 (1) ◽  
pp. 295
Author(s):  
Wei Liu ◽  
Yancong Zhu ◽  
Min Liu ◽  
Yanru Li

Researchers, designers, and engineers embrace the ongoing maker movement and view ‘grassroots innovation’ as essentially important for staying competitive in both academia and in industry. The research team gives full play to its expertise on innovation and entrepreneurship education. In the past five years of actively participating in the China-U.S. Young Maker Competition, the team coached and worked with over five hundred student makers to create innovative engineering prototypes focusing on the areas of community development, education, environmental protection, health and fitness, energy, transportation, and other areas of sustainable development by combining innovative design and emerging technologies. Several conceptual designs and developments are described. A transdisciplinary engineering design and teaching approach is presented and discussed. Due to the limited time allowed by the competition, more thorough design and development iterations will take place in a future study.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3625
Author(s):  
Tengxiao Wang ◽  
Heng Jin ◽  
Mengfan Lou ◽  
Xinyu Wang ◽  
Yi Liu

The growth of global energy transportation has promoted the rapid increase of large-scale LNG (liquefied natural gas) carriers, and concerns around the safety of LNG ships has attracted significant attention. Such a floating structure is affected by the external wave excitation and internal liquid sloshing. The interaction between the structure’s motion and the internal sloshing under wave actions may lead to the ship experiencing an unexpected accident. In this research, a hydrodynamic experiment is conducted to investigate the motion responses of a floating tank mooring, both close to and away from a dock. The resonance coupling effect of the internal sloshing and gap flow on the tank’s motion is considered. Based on the measured motion trajectory of the floating tank, the stability and safety of the floating tank are estimated. The results show that the sloshing resonance and narrow gap resonance are beneficial to the stability of the ship. This is helpful for controlling the motion of a berthed ship under wave action with a reasonable selection of the gap distance and the liquid level.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohd Javaid ◽  
Ibrahim Haleem Khan ◽  
Ravi Pratap Singh ◽  
Shanay Rab ◽  
Rajiv Suman

Purpose Unmanned aerial vehicles are commonly known as UAVs and drones. Nowadays, industries have begun to realise the operational and economic benefits of drone-enabled tasks. The Internet of Things (IoT), Big Data, drones, etc., represent implementable advanced technologies intended to accomplish Industry 4.0. The purpose of this study is to discuss the significant contributions of drones for Industry 4.0. Design/methodology/approach Nowadays, drones are used for inspections, mapping and surveying in difficult or hazardous locations. For writing this paper, relevant research papers on drone for Industry 4.0 are identified from various research platforms such as Scopus, Google Scholar, ResearchGate and ScienceDirect. Given the enormous extent of the topic, this work analyses many papers, reports and news stories in an attempt to comprehend and clarify Industry 4.0. Findings Drones are being implemented in manufacturing, entertainment industries (cinematography, etc.) and machinery across the world. Thermal-imaging devices attached to drones can detect variable heat levels emanating from a facility, trigger the sprinkler system and inform emergency authorities. Due partly to their utility and adaptability in industrial areas such as energy, transportation, engineering and more, autonomous drones significantly impact Industry 4.0. This paper discusses drones and their types. Several technological advances and primary extents of drones for Industry 4.0 are diagrammatically elaborated. Further, the authors identified and discussed 19 major applications of drones for Industry 4.0. Originality/value This paper’s originality lies in its discussion and exploration of the capabilities of drones for Industry 4.0, especially in manufacturing organisations. In addition to improving efficiency and site productivity, drones can easily undertake routine inspections and check streamlines operations and maintenance procedures. This work contributes to creating a common foundation for comprehending Industry 4.0 outcomes from many disciplinary viewpoints, allowing for more research and development for industrial innovation and technological progress.


2021 ◽  
Author(s):  
Long-Chao Huang ◽  
Dengke Chen ◽  
De-Gang Xie ◽  
Suzhi Li ◽  
Ting Zhu ◽  
...  

Abstract Hydrogen embrittlement jeopardizes the use of high-strength steels as critical load-bearing components in energy, transportation, and infrastructure applications. However, our understanding of hydrogen embrittlement mechanism is still obstructed by the uncertain knowledge of how hydrogen affects dislocation motion, due to the lack of quantitative experimental evidence. Here, by studying the well-controlled, cyclic, bow-out movements of individual screw dislocations, the key to plastic deformation in α-iron, we find that the critical stress for initiating dislocation motion in a 2 Pa electron-beam-excited H2 atmosphere is 27~43% lower than that under vacuum conditions, proving that hydrogen lubricates screw dislocation motion. Moreover, we find that aside from vacuum degassing, dislocation motion facilitates the de-trapping of hydrogen, allowing the dislocation to regain its hydrogen-free behavior. Atomistic simulations reveal that the observed hydrogen-enhanced dislocation motion arises from the hydrogen-reduced kink nucleation barrier. These findings at individual dislocation level can help hydrogen embrittlement modelling in steels.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012028
Author(s):  
N A Labetskaya ◽  
I M Datsko ◽  
S A Chaikovsky ◽  
V A Vankevich ◽  
E V Oreshkin ◽  
...  

Abstract Plasma formation on the surface of conductors as a result of a skin explosion is one of the key issues of the efficiency of energy transportation along the vacuum lines of terawatt-level pulsed generators. Experimental studies of plasma formation on the surface of flat conductors were carried out on the MIG generator (current level ~ 2.5 MA, rise time ~ 100 ns). The magnitude of the magnetic field induction exceeded the values required for the explosion of the conductor surface facing the magnetic field in an asymmetric configuration or both surfaces of the conductor in a symmetric configuration. It was shown that in both configurations, a plasma channel is formed on the surface of a copper foil with a thickness of 100 microns along its longitudinal axis. Experimental data on the dynamics of plasma formation at the edges of a flat conductor have been obtained. A magnetohydrodynamic simulation of an explosion in strong magnetic fields of flat conductors whose width is much greater than their thickness showed that: the expansion of the plasma along the width of the conductor is suppressed, and the plasma expands mainly along its thickness. The simulation results are in good agreement with the experimental once.


2021 ◽  
Vol 149 ◽  
pp. 111346
Author(s):  
Changhui Liu ◽  
Yu Qiao ◽  
Peixing Du ◽  
Jiahao Zhang ◽  
Jiateng Zhao ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2414
Author(s):  
Md Abdullah Al Faruque ◽  
Md Syduzzaman ◽  
Joy Sarkar ◽  
Kadir Bilisik ◽  
Maryam Naebe

Graphene-based materials in the form of fibres, fabrics, films, and composite materials are the most widely investigated research domains because of their remarkable physicochemical and thermomechanical properties. In this era of scientific advancement, graphene has built the foundation of a new horizon of possibilities and received tremendous research focus in several application areas such as aerospace, energy, transportation, healthcare, agriculture, wastewater management, and wearable technology. Although graphene has been found to provide exceptional results in every application field, a massive proportion of research is still underway to configure required parameters to ensure the best possible outcomes from graphene-based materials. Until now, several review articles have been published to summarise the excellence of graphene and its derivatives, which focused mainly on a single application area of graphene. However, no single review is found to comprehensively study most used fabrication processes of graphene-based materials including their diversified and potential application areas. To address this genuine gap and ensure wider support for the upcoming research and investigations of this excellent material, this review aims to provide a snapshot of most used fabrication methods of graphene-based materials in the form of pure and composite fibres, graphene-based composite materials conjugated with polymers, and fibres. This study also provides a clear perspective of large-scale production feasibility and application areas of graphene-based materials in all forms.


2021 ◽  
Vol 9 (8) ◽  
pp. 145-163
Author(s):  
Stephen Okelo

The purpose of this study was to investigate the effects of  Environmental factors  on financing BOT( Build Operate Transfer) infrastructure projects, Infrastructure plays a crucial role in the drive for achieving development by providing energy, transportation, and water. There have been ups and downs in the degree of emphasis placed on infrastructure, but infrastructure has remained the largest component of the public investment programs in developing countries 62 % of gross domestic product (GDP). Nearly half of the international financial institutions’ project lending to developing countries goes to infrastructure. The study used a mixed method research design; with a target population of 720 employees of rift valley rail consortium and government of Kenya representatives of which a sample of 338. The study used questionnaires and interview guides to collect data. Data were collected by administering questionnaires to the respondents while senior managers and government officials were interviewed. Data collected was coded. Qualitative data was analyzed using themes and sub-themes, while quantitative data was analyzed by the use of inferential statistics, of which the frequency percentages were calculated, data were cross-tabulated to establish the relationship within the variables and finally, a Wald test statistic was conducted to measure the strength and direction of relationship within the variables. A calculated Pearson Chi-Square of 0.818 lead to rejection of the null hypothesis and therefore, there is a significant relationship between Environmental antecedents and financing of BOT projects. The study recommended that there is a need for policies to be articulated on tackling the rise of environmental destruction due to the BOT projects in Kenya.  


Sign in / Sign up

Export Citation Format

Share Document