scholarly journals NINQ: Name-Integrated Query Framework for Named-Data Networking of Things

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2906 ◽  
Author(s):  
Muhammad Atif Ur Rehman ◽  
Rehmat Ullah ◽  
Byung-Seo Kim

Information-Centric Networking (ICN) is a paradigm shift from host-to-host Internet Protocol (IP)-based communication to content-based communication. In ICN, the content-retrieval process employs names that are given through different naming schemes such as hierarchical, flat, attribute, and hybrid. Among different ICN architectures, Named-Data Networking (NDN) has gained much interest in the research community and is actively being explored for the Internet of Things (IoT) and sensor networks, and follows a hierarchical naming format. NDN protocol follows a pull-based communication model where the content consumer gets content irrespective of the location of the content provider. The content provider in NDN and sensor networks can be considered to be a distributed database that monitors or controls the environment and caches the sensed data or controls information into their memory. The proposed Name-INtegrated Query (NINQ) framework for NDN-based IoT provides a flexible, expressive, and secure query mechanism that supports content retrieval as well as control and configuration command exchange among various nodes in a smart building. Different use cases are presented in this paper that expand on the behavior of proposed query framework in different scenarios. Simulation results of data collection and exchange of control commands show that proposed query framework significantly improves Interest Satisfaction Rate (ISR), Command Satisfaction Rate (CSR), energy efficiency, and average delay. Moreover, it is evident from the simulation results that proposed query framework significantly reduces the number of transmissions in the network in both data collection and exchange of control command scenarios, which improves the network performance.

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3150 ◽  
Author(s):  
Chao Sha ◽  
Qin Liu ◽  
Si-Yi Song ◽  
Ru-Chuan Wang

With the increasing number of ubiquitous terminals and the continuous expansion of network scale, the problem of unbalanced energy consumption in sensor networks has become increasingly prominent in recent years. However, a node scheduling strategy or an energy consumption optimization algorithm may be not enough to meet the requirements of large-scale application. To address this problem a type of Annulus-based Energy Balanced Data Collection (AEBDC) method is proposed in this paper. The circular network is divided into several annular sectors of different sizes. Nodes in the same annulus-sector form a cluster. Based on this model, a multi-hop data forwarding strategy with the help of the candidate cluster headers is proposed to balance energy consumption during transmission and to avoid buffer overflow. Meanwhile, in each annulus, there is a Wireless Charging Vehicle (WCV) that is responsible for periodically recharging the cluster headers as well as the candidate cluster headers. By minimizing the recharging cost, the energy efficiency is enhanced. Simulation results show that AEBDC can not only alleviate the “energy hole problem” in sensor networks, but also effectively prolong the network lifetime.


2021 ◽  
Vol 10 (2) ◽  
pp. 28
Author(s):  
Saeid Pourroostaei Ardakani

Mobile agents have the potential to offer benefits, as they are able to either independently or cooperatively move throughout networks and collect/aggregate sensory data samples. They are programmed to autonomously move and visit sensory data stations through optimal paths, which are established according to the application requirements. However, mobile agent routing protocols still suffer heavy computation/communication overheads, lack of route planning accuracy and long-delay mobile agent migrations. For this, mobile agent route planning protocols aim to find the best-fitted paths for completing missions (e.g., data collection) with minimised delay, maximised performance and minimised transmitted traffic. This article proposes a mobile agent route planning protocol for sensory data collection called MINDS. The key goal of this MINDS is to reduce network traffic, maximise data robustness and minimise delay at the same time. This protocol utilises the Hamming distance technique to partition a sensor network into a number of data-centric clusters. In turn, a named data networking approach is used to form the cluster-heads as a data-centric, tree-based communication infrastructure. The mobile agents utilise a modified version of the Depth-First Search algorithm to move through the tree infrastructure according to a hop-count-aware fashion. As the simulation results show, MINDS reduces path length, reduces network traffic and increases data robustness as compared with two conventional benchmarks (ZMA and TBID) in dense and large wireless sensor networks.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Chao Sha ◽  
Tian-cheng Shen ◽  
Jin-yu Chen ◽  
Yao Zhang ◽  
Ru-chuan Wang

In view of the unbalanced energy consumption of traditional cluster-based sensor networks, this paper proposes a type of uneven clustering protocol in data collection. The network is divided into inner and outer regions according to the distance between nodes and the base station. The inner region is consisted of several layers and nodes in outer region are deployed in grids of different sizes. Sensor data is collected by nodes in outer region and then is be transmitted to the inner region. Nodes in the inner region do data fusion and forward data from the lower layer to the higher one. Simulation results show that, compared with MTP and CDFUD, the proposed algorithm performs well in balance of energy consumption and could effectively prolong the network lifetime.


2021 ◽  
Vol 13 (5) ◽  
pp. 19-35
Author(s):  
Saad Al-Ahmadi

The Information-Centric Network (ICN) is a future internet architecture with efficient content retrieval and distribution. Named Data Networking (NDN) is one of the proposed architectures for ICN. NDN’s innetwork caching improves data availability, reduce retrieval delays, network load, alleviate producer load, and limit data traffic. Despite the existence of several caching decision algorithms, the fetching and distribution of contents with minimum resource utilization remains a great challenge. In this paper, we introduce a new cache replacement strategy called Enhanced Time and Frequency Cache Replacement strategy (ETFCR) where both cache hit frequency and cache retrieval time are used to select evicted data chunks. ETFCR adds time cycles between the last two requests to adjust data chunk’s popularity and cache hits. We conducted extensive simulations using the ccnSim simulator to evaluate the performance of ETFCR and compare it to that of some well-known cache replacement strategies. Simulations results show that ETFCR outperforms the other cache replacement strategies in terms of cache hit ratio, and lower content retrieval delay.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Xiaoding Wang ◽  
Li Xu ◽  
Shuming Zhou ◽  
Wei Wu

Providing successful data collection and aggregation is a primary goal for a broad spectrum of critical applications of wireless sensor networks. Unfortunately, the problem of connectivity loss, which may occur when a network suffers from natural disasters or human sabotages, may cause failure in data aggregation. To tackle this issue, plenty of strategies that deploy relay devices on target areas to restore connectivity have been devised. However, all of them assume that either the landforms of target areas are flat or there are sufficient relay devices. In real scenarios, such assumptions are not realistic. In this paper, we propose a hybrid recovery strategy based on random terrain (simply, HRSRT) that takes both realistic terrain influences and quantitative limitations of relay devices into consideration. HRSRT is proved to accomplish the biconnectivity restoration and meanwhile minimize the energy cost for data collection and aggregation. In addition, both of complexity and approximation ratio of HRSRT are explored. The simulation results show that HRSRT performs well in terms of overall/maximum energy cost.


Author(s):  
João do Monte Duarte ◽  
Torsten Braun ◽  
Leandro Villas

In this thesis, Vehicular Named-Data Networking (VNDN) refers tothe use of the Named-Data Networking communication model over VehicularAd-hoc Networks. With the aim of addressing the problems caused by mobility to efficiently support VNDN communications in highly mobile traffic scenarios, various contributions were proposed in the scope of this thesis. These contributions include a routing protocol, able to address VNDN problems such as broadcast storms and message redundancy, as well as solutions to enable content advertisements and for addressing the problems caused by reverse path partitioning, network partitioning, and source mobility. Finally, all the proposed solutions are integrated into a single framework called MobiVNDN. The evaluation results show that the proposed solutions are efficient and scalable, providing high VNDN application performance even in complex traffic scenarios.


2020 ◽  
Vol 16 (3) ◽  
pp. 155014772090928 ◽  
Author(s):  
Mazen Alowish ◽  
Yoshiaki Shiraishi ◽  
Yasuhiro Takano ◽  
Masami Mohri ◽  
Masakatu Morii

Vehicle ad hoc network is the key technology for a future Internet of vehicles and intelligent transport system. However, involvement of vast number of vehicles in Internet of vehicles limits the performance of vehicle ad hoc network. To tackle this problem, a novel vehicle ad hoc network architecture with two different technologies such as software-defined networking and named-data networking is proposed in this article. In the proposed software-defined networking controlled vehicular named-data networking, IP addressing issue is resolved by named-data networking and global view of the network is attained by software-defined networking. Emergency data dissemination is initiated with packet classification. For packet classification, policy-based bifold classifier is proposed in roadside unit and supported by evolved interest packet. Subsequently, best disseminator selection is carried out by trustworthy weighted graph scheme based on novel weight value, which is computed by considering significant metrics. Content retrieval is accomplished by roadside unit and assisted by a controller. Location of content producer is obtained from a controller and optimal route is selected by roadside unit. Optimal route selection is performed by roadside unit for both content retrieval and vehicle-to-vehicle communication using novel region-based hybrid cuckoo search algorithm. Hybrid algorithm combines cuckoo search and particle swarm optimization algorithm to perform efficient route selection. Involvement of software-defined networking controller supports numerous users by providing a global view of the network, which includes network status and traffic information. Extensive simulation in NS-3 assures better interest satisfaction rate, interest satisfaction delay, forwarder interest packets, average hop count, and gain of scalability in software-defined networking controlled vehicular named-data networking than traditional vehicle ad hoc network.


Sign in / Sign up

Export Citation Format

Share Document