A multi‐modality paradigm for CT and MRI fusion with applications of quantum image processing

Author(s):  
Ayush Dogra ◽  
Chirag Kamal Ahuja ◽  
Sanjeev Kumar
2021 ◽  
pp. 2150360
Author(s):  
Wanghao Ren ◽  
Zhiming Li ◽  
Yiming Huang ◽  
Runqiu Guo ◽  
Lansheng Feng ◽  
...  

Quantum machine learning is expected to be one of the potential applications that can be realized in the near future. Finding potential applications for it has become one of the hot topics in the quantum computing community. With the increase of digital image processing, researchers try to use quantum image processing instead of classical image processing to improve the ability of image processing. Inspired by previous studies on the adversarial quantum circuit learning, we introduce a quantum generative adversarial framework for loading and learning a quantum image. In this paper, we extend quantum generative adversarial networks to the quantum image processing field and show how to learning and loading an classical image using quantum circuits. By reducing quantum gates without gradient changes, we reduced the number of basic quantum building block from 15 to 13. Our framework effectively generates pure state subject to bit flip, bit phase flip, phase flip, and depolarizing channel noise. We numerically simulate the loading and learning of classical images on the MINST database and CIFAR-10 database. In the quantum image processing field, our framework can be used to learn a quantum image as a subroutine of other quantum circuits. Through numerical simulation, our method can still quickly converge under the influence of a variety of noises.


Author(s):  
Padmapriya Praveenkumar ◽  
Santhiyadevi R. ◽  
Amirtharajan R.

In this internet era, transferring and preservation of medical diagnostic reports and images across the globe have become inevitable for the collaborative tele-diagnosis and tele-surgery. Consequently, it is of prime importance to protect it from unauthorized users and to confirm integrity and privacy of the user. Quantum image processing (QIP) paves a way by integrating security algorithms in protecting and safeguarding medical images. This chapter proposes a quantum-assisted encryption scheme by making use of quantum gates, chaotic maps, and hash function to provide reversibility, ergodicity, and integrity, respectively. The first step in any quantum-related image communication is the representation of the classical image into quantum. It has been carried out using novel enhanced quantum representation (NEQR) format, where it uses two entangled qubit sequences to hoard the location and its pixel values of an image. The second step is performing transformations like confusion, diffusion, and permutation to provide an uncorrelated encrypted image.


2016 ◽  
pp. 28-56 ◽  
Author(s):  
Sanjay Chakraborty ◽  
Lopamudra Dey

Image processing on quantum platform is a hot topic for researchers now a day. Inspired from the idea of quantum physics, researchers are trying to shift their focus from classical image processing towards quantum image processing. Storing and representation of images in a binary and ternary quantum system is always one of the major issues in quantum image processing. This chapter mainly deals with several issues regarding various types of image representation and storage techniques in a binary as well as ternary quantum system. How image pixels can be organized and retrieved based on their positions and intensity values in 2-states and 3-states quantum systems is explained here in detail. Beside that it also deals with the topic that focuses on the clear filteration of images in quantum system to remove unwanted noises. This chapter also deals with those important applications (like Quantum image compression, Quantum edge detection, Quantum Histogram etc.) where quantum image processing associated with some of the natural computing techniques (like AI, ANN, ACO, etc.).


2018 ◽  
Vol 27 (4) ◽  
pp. 718-727 ◽  
Author(s):  
Yongquan Cai ◽  
Xiaowei Lu ◽  
Nan Jiang

2020 ◽  
Vol 19 (5) ◽  
Author(s):  
Hai-Sheng Li ◽  
Ping Fan ◽  
Hai-ying Xia ◽  
Ri-Gui Zhou

Author(s):  
Padmapriya Praveenkumar ◽  
Santhiyadevi R. ◽  
Amirtharajan R.

In this internet era, transferring and preservation of medical diagnostic reports and images across the globe have become inevitable for the collaborative tele-diagnosis and tele-surgery. Consequently, it is of prime importance to protect it from unauthorized users and to confirm integrity and privacy of the user. Quantum image processing (QIP) paves a way by integrating security algorithms in protecting and safeguarding medical images. This chapter proposes a quantum-assisted encryption scheme by making use of quantum gates, chaotic maps, and hash function to provide reversibility, ergodicity, and integrity, respectively. The first step in any quantum-related image communication is the representation of the classical image into quantum. It has been carried out using novel enhanced quantum representation (NEQR) format, where it uses two entangled qubit sequences to hoard the location and its pixel values of an image. The second step is performing transformations like confusion, diffusion, and permutation to provide an uncorrelated encrypted image.


Sign in / Sign up

Export Citation Format

Share Document