A validated HPLC method for the simultaneous determination of naftidrofuryl oxalate and its degradation product (metabolite), naftidrofuryl acid: applications to pharmaceutical tablets and biological samples

2012 ◽  
Vol 5 (6) ◽  
pp. 500-508 ◽  
Author(s):  
Suzy M. Sabry ◽  
Tarek S. Belal ◽  
Magda H. Barary ◽  
Mohammed E. A. Ibrahim
2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Rania N. El-Shaheny ◽  
Fathalla F. Belal

A simple, rapid, and sensitive RP-HPLC method was developed and validated for the simultaneous determination of chlordiazepoxide (CDO) and mebeverine HCl (MBV) in the presence of CDO impurity (2-amino-5-chlorobenzophenone, ACB) and MBV degradation product (veratric acid, VER). Separation was achieved within 9 min on a BDS Hypersil phenyl column (4.5 mm × 250 mm, 5 µm particle size) using a mobile phase consisting of acetonitrile: 0.1 M potassium dihydrogen phosphate: triethylamine (35 : 65 : 0.2, v/v/v) in an isocratic mode at a flow rate of 1 mL/min. The pH of the mobile phase was adjusted to 4.5 with orthophosphoric acid and UV detection was set at 260 nm. A complete validation procedure was conducted. The proposed method exhibited excellent linearity over the concentration ranges of 1.0–100.0, 10.0–200.0, 2.0–40.0, and 2.0–40.0 µg/mL for CDO, MBV, VER, and ACB, respectively. The proposed method was applied for the simultaneous determination of CDO and MBV in their coformulated tablets with mean percentage recoveries of 99.75 ± 0.62 and 98.61 ± 0.38, respectively. The results of the proposed method were favorably compared with those of a comparison HPLC method using Studentt-test and the variance ratioF-test. The chemical structure of MBV degradation product was ascertained by mass spectrometry and IR studies.


2014 ◽  
Vol 64 (2) ◽  
pp. 187-198 ◽  
Author(s):  
Amer M. Alanazi ◽  
Ali S. Abdelhameed ◽  
Nasr Y. Khalil ◽  
Azmat A. Khan ◽  
Ibrahim A. Darwish

Abstract A simple, sensitive and accurate HPLC method with high throughput has been developed and validated for the simultaneous determination of irbesartan (IRB) and hydrochlorothiazide (HCT) in combined pharmaceutical dosage forms. The proposed method employed, for the first time, a monolithic column in the analysis. Optimal chromatographic separation of the analytes was achieved on Chromolith® Performance RP-18e column using a mobile phase consisting of phosphate buffer (pH 4)/acetonitrile (50:50, V/V) pumped isocratically at a flow rate of 1.0 mL min-1. The eluted analytes were monitored with a UV detector set at 270 nm. Under the optimum chromatographic conditions, linear relationship with a good correlation coefficient (R ≥ 0.9997) was found between the peak area and the corresponding concentrations of both IRB and HCT in the ranges of 10-200 and 1-20 ng mL-1. The limits of detection were 2.34 and 0.03 ng mL-1 for IRB and HCT, respectively. The intra- and inter-assay precisions were satisfactory as the RSD values did not exceed 3 %. The accuracy of the proposed method was > 97 %. The proposed method had high throughput as the analysis involved a simple procedure and a very short run- -time of < 3 min. The results demonstrated that the method is applicable in the quality control of combined pharmaceutical tablets containing IRB and HCT


2020 ◽  
Vol 32 (1) ◽  
pp. 39-43
Author(s):  
Abdul Shakoor ◽  
Mahmood Ahmed ◽  
Rabia Ikram ◽  
Sajad Hussain ◽  
Arifa Tahir ◽  
...  

The present work aimed to develop and validate a simple, rapid, sensitive, accurate, and precise method for simultaneous determination of metformin hydrochloride and vildagliptin in tablet and biological samples. Isocratic elution of both the analytes was performed at 35 °C by injecting 20 μL into Thermo Hypersil ODS C18 column (5 μm, 4.6 mm× 250 mm), while the flow rate was set to 0.8 mL/min. The mobile phase comprised of methanol, acetonitrile, and phosphate buffer (5:30:65, v/v, pH 3.5), and wavelength was selected at 212 nm. The overall run time per sample was 7.0 min with a retention time of 3.36 and 5.41 min for metformin hydrochloride and vildagliptin, respectively. The calibration curve was linear from 10–140 μg/mL for metformin and 1–14 μg/mL for vildagliptin with a coefficient of determination (R2) ≤ 0.9919, while repeatability and reproducibility (expressed as relative standard deviation) were lower than 1.13 and 0.97%, respectively. Force degradation studies indicated a complete separation of the analytes in the presence of their degradation products providing a high degree of method specificity. The proposed reversed-phase high-performance liquid chromatography (RP-HPLC) method was demonstrated to be simple and rapid for the determination of metformin hydrochloride and vildagliptin in commercially available tablet and biological samples providing recoveries ranged between 100.13–100.29%.


2012 ◽  
Vol 2 (2) ◽  
pp. 364-367 ◽  
Author(s):  
Saida Naik Dheeravath ◽  
◽  
Kasani Ramadevi ◽  
Zilla Saraswathi ◽  
Dheeravath Maniklal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document