scholarly journals A trait‐based trade‐off between growth and mortality: evidence from 15 tropical tree species using size‐specific relative growth rates

2014 ◽  
Vol 4 (18) ◽  
pp. 3675-3688 ◽  
Author(s):  
Christopher D. Philipson ◽  
Daisy H. Dent ◽  
Michael J. O'Brien ◽  
Juliette Chamagne ◽  
Dzaeman Dzulkifli ◽  
...  
2016 ◽  
Vol 30 (4) ◽  
pp. 602-608 ◽  
Author(s):  
Marcilio Fagundes ◽  
Renata C. Xavier ◽  
Letícia F.L. Ramos ◽  
Walisson K. Siqueira ◽  
Ronaldo Reis-Junior ◽  
...  

AoB Plants ◽  
2019 ◽  
Vol 11 (6) ◽  
Author(s):  
A De Sedas ◽  
Y González ◽  
K Winter ◽  
O R Lopez

Abstract Sea-level rise will result in increased salinization of coastal areas. Soil salinity is a major abiotic stress that reduces plant growth, yet tolerance to salinity varies across environmental conditions, habitats and species. To determine salinity tolerance of 26 common tropical tree species from Panama, we measured growth, gas exchange and mortality of 3-month-old seedlings subjected to weekly irrigation treatments using five seawater solutions (0 % = control, 20, 40, 60 and 90 % V/V of seawater) for ~2 months. In general, species from coastal areas were more tolerant to increased seawater concentration than inland species. Coastal species such as Pithecellobium unguis-cati, Mora oleifera, Terminalia cattapa and Thespesia populnea maintained growth rates close to those of controls at 90 % seawater. In contrast, inland species such as Minquartia guainensis, Apeiba membranacea, Ormosia coccinea and Ochroma pyramidale showed strong reductions in growth rates and high mortality. Plant height and leaf production also differed greatly between the two groups of plants. Furthermore, measurements of gas exchange parameters, i.e. stomatal conductance and maximum photosynthetic rate, were consistent with the contrasting growth responses of coastal and inland species. Our research reveals a great degree of variation in salinity tolerance among tropical tree species and demonstrates a close relationship between species habitat and the ability to thrive under increasing salt concentration in the soil, with coastal species being better adapted to withstand increased soil salinity than non-costal species.


Ecology ◽  
2012 ◽  
Vol 93 (12) ◽  
pp. 2626-2636 ◽  
Author(s):  
Nadja Rüger ◽  
Christian Wirth ◽  
S. Joseph Wright ◽  
Richard Condit

IAWA Journal ◽  
1989 ◽  
Vol 10 (2) ◽  
pp. 161-169 ◽  
Author(s):  
J.A. Boninsegna ◽  
R. Villalba ◽  
L. Amarilla ◽  
J. Ocampo

Wood samples of 13 tree species from three sites in the Selva Misionera (Misiones Province, Argentina) were analysed macroand microscopically for occurrence and formation of growth rings. Well-defined annual tree rings were found in Cedrela fissilis Vell., Parapiptadenia rigida Benth., Cordia trichotoma Vell. and Chorisia speciosa St. Hil.


2020 ◽  
Author(s):  
Marúcia da Cunha Fagundes ◽  
Ândrea Carla Dalmolin ◽  
Luciana Santos Lobo ◽  
Ana Cristina Schilling ◽  
Martielly Santana dos Santos ◽  
...  

Abstract Aims Screening tree species in tropical rainforest according to their shade tolerance is important to efficiently manage the native trees of economic significance in secondary forest enrichment regimes. The objective of this study was to determine the whole-plant light compensation point (WPLCP) and compare the phenotypic plasticity in relation to growth and carbon allocation of Cariniana legalis and Gallesia integrifolia seedlings under low light availability. Methods Seedlings were cultivated for 77 days under conditions of five photosynthetically active radiation (PAR) (0.02, 1.1, 2.3, 4.5 and 5.9 mol photons m -2 day -1) in three replicates. Growth and carbon allocation variables were determined. Important Findings Growth rates of C. legalis were higher and lower than those of G. integrifolia under 1.1 and 5.9 mol photons m -2 day -1, respectively. The WPLCP differed significantly between the two species. In accordance with the criteria of the shade tolerance classification for these two tropical tree species, our results showed that C. legalis had lower WPLCP and phenotypic plasticity in terms of higher growth rates and greater shade tolerance than G. integrifolia. From a practical point of view, we demonstrated that the differential linkage between growth and changing PAR between the two species can become a useful tool for comparing and selecting tree species in forest enrichment projects.


1996 ◽  
Vol 26 (9) ◽  
pp. 1556-1568 ◽  
Author(s):  
Thimmappa S. Anekonda ◽  
Richard S. Criddle ◽  
Lee D. Hansen ◽  
Mike Bacca

Seventeen Eucalyptus species and 30 rapid-growing Eucalyptuscamaldulensis trees (referred to as plus trees), growing in a plantation were studied to examine relationships among measured plant growth and respiratory parameters, geographical origins, and growth climate. The respiratory parameters measured at two different temperatures by isothermal calorimetry were metabolic heat rate, rate of CO2 production, and the ratio of heat rate to CO2 rate. Metabolic heat rate was also measured as a continuous function of temperature by differential scanning calorimetry in the range of 10 to 40 °C. Tree growth was measured as rates of height and stem volume growth. The values of respiratory and growth variables of Eucalyptus species are significantly correlated with latitude and altitude of origin of their seed sources. The maximum metabolic heat rate, the temperature of the maximum heat rate, the temperature coefficients of metabolic rate, and the temperatures at which the slopes of Arrhenius plots change are all genetically determined parameters that vary both within and among species. Measurement of growth rate–respiration rate–temperature relationships guide understanding of why relative growth rates of Eucalyptus species and individual genotypes differ with climate, making it possible to identify genotypes best suited for rapid growth in different climates. The temperature dependence of respiration rates is an important factor determining relative growth rates of eucalypts in different climates. To achieve optimum biomass production the temperature dependence of individual plants must be matched to growth climate.


2008 ◽  
Vol 10 (4) ◽  
pp. 1001-1004 ◽  
Author(s):  
Marcela Corbo Guidugli ◽  
Tatiana de Campos ◽  
Adna Cristina Barbosa de Sousa ◽  
Juliana Massimino Feres ◽  
Alexandre Magno Sebbenn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document