Growth and phenotypic plasticity of two tropical tree species under low light availability

2020 ◽  
Author(s):  
Marúcia da Cunha Fagundes ◽  
Ândrea Carla Dalmolin ◽  
Luciana Santos Lobo ◽  
Ana Cristina Schilling ◽  
Martielly Santana dos Santos ◽  
...  

Abstract Aims Screening tree species in tropical rainforest according to their shade tolerance is important to efficiently manage the native trees of economic significance in secondary forest enrichment regimes. The objective of this study was to determine the whole-plant light compensation point (WPLCP) and compare the phenotypic plasticity in relation to growth and carbon allocation of Cariniana legalis and Gallesia integrifolia seedlings under low light availability. Methods Seedlings were cultivated for 77 days under conditions of five photosynthetically active radiation (PAR) (0.02, 1.1, 2.3, 4.5 and 5.9 mol photons m -2 day -1) in three replicates. Growth and carbon allocation variables were determined. Important Findings Growth rates of C. legalis were higher and lower than those of G. integrifolia under 1.1 and 5.9 mol photons m -2 day -1, respectively. The WPLCP differed significantly between the two species. In accordance with the criteria of the shade tolerance classification for these two tropical tree species, our results showed that C. legalis had lower WPLCP and phenotypic plasticity in terms of higher growth rates and greater shade tolerance than G. integrifolia. From a practical point of view, we demonstrated that the differential linkage between growth and changing PAR between the two species can become a useful tool for comparing and selecting tree species in forest enrichment projects.

2014 ◽  
Vol 4 (18) ◽  
pp. 3675-3688 ◽  
Author(s):  
Christopher D. Philipson ◽  
Daisy H. Dent ◽  
Michael J. O'Brien ◽  
Juliette Chamagne ◽  
Dzaeman Dzulkifli ◽  
...  

AoB Plants ◽  
2019 ◽  
Vol 11 (6) ◽  
Author(s):  
A De Sedas ◽  
Y González ◽  
K Winter ◽  
O R Lopez

Abstract Sea-level rise will result in increased salinization of coastal areas. Soil salinity is a major abiotic stress that reduces plant growth, yet tolerance to salinity varies across environmental conditions, habitats and species. To determine salinity tolerance of 26 common tropical tree species from Panama, we measured growth, gas exchange and mortality of 3-month-old seedlings subjected to weekly irrigation treatments using five seawater solutions (0 % = control, 20, 40, 60 and 90 % V/V of seawater) for ~2 months. In general, species from coastal areas were more tolerant to increased seawater concentration than inland species. Coastal species such as Pithecellobium unguis-cati, Mora oleifera, Terminalia cattapa and Thespesia populnea maintained growth rates close to those of controls at 90 % seawater. In contrast, inland species such as Minquartia guainensis, Apeiba membranacea, Ormosia coccinea and Ochroma pyramidale showed strong reductions in growth rates and high mortality. Plant height and leaf production also differed greatly between the two groups of plants. Furthermore, measurements of gas exchange parameters, i.e. stomatal conductance and maximum photosynthetic rate, were consistent with the contrasting growth responses of coastal and inland species. Our research reveals a great degree of variation in salinity tolerance among tropical tree species and demonstrates a close relationship between species habitat and the ability to thrive under increasing salt concentration in the soil, with coastal species being better adapted to withstand increased soil salinity than non-costal species.


Ecology ◽  
2012 ◽  
Vol 93 (12) ◽  
pp. 2626-2636 ◽  
Author(s):  
Nadja Rüger ◽  
Christian Wirth ◽  
S. Joseph Wright ◽  
Richard Condit

IAWA Journal ◽  
1989 ◽  
Vol 10 (2) ◽  
pp. 161-169 ◽  
Author(s):  
J.A. Boninsegna ◽  
R. Villalba ◽  
L. Amarilla ◽  
J. Ocampo

Wood samples of 13 tree species from three sites in the Selva Misionera (Misiones Province, Argentina) were analysed macroand microscopically for occurrence and formation of growth rings. Well-defined annual tree rings were found in Cedrela fissilis Vell., Parapiptadenia rigida Benth., Cordia trichotoma Vell. and Chorisia speciosa St. Hil.


2020 ◽  
Vol 44 ◽  
Author(s):  
Emile Caroline Silva Lopes ◽  
Ândrea Carla Dalmolin ◽  
Ivan Bezerra Allama ◽  
Karine Ferreira Pereira ◽  
William Martin Aitken II ◽  
...  

ABSTRACT The effects of root deformation caused by errors in the pricking-out process in forest nurseries are still unknown for tropical tree seedlings. We analyzed the effects of light availability and root deformation on growth and biomass allocation in seedlings of Senna multijuga, a pioneer tropical tree commonly used in forest restoration programs. Our hypotheses were: (a) as a typical light-demanding species, the seedlings of S. multijuga may have their growth compromised by low light availability; (b) root deformation impairs growth rates and induces changes in biomass allocation; and (c) the effects of low light availability on growth and biomass allocation are increased by root deformation. Seedlings with and without root deformation were cultivated for 43 days under three levels of total daily photosynthetically active radiation (PAR) (28, 12, and 1 mol photons m-2 day-1). Seedlings of S. multijuga had their growth rates severely affected by values of PAR at about 1 mol photons m-2 day-1, but root deformation did not affect the relative growth rates of the whole plant. Instead, root deformation caused a decrease in the relative growth rate of roots in all light availabilities. The changes in root growth affected biomass allocation to the roots. The interactive effects of light availability and root deformation on the allocation of biomass to leaves are more pronounced at low light availability. Root deformations may lead to the production of seedlings with a low competitiveness capacity regardless of light conditions.


Sign in / Sign up

Export Citation Format

Share Document