scholarly journals The bacterial community structure and functional profile in the heavy metal contaminated paddy soils, surrounding a nonferrous smelter in South Korea

2018 ◽  
Vol 8 (12) ◽  
pp. 6157-6168 ◽  
Author(s):  
Sherlyn C. Tipayno ◽  
Jaak Truu ◽  
Sandipan Samaddar ◽  
Marika Truu ◽  
Jens-Konrad Preem ◽  
...  
2019 ◽  
Vol 134 ◽  
pp. 111-115 ◽  
Author(s):  
Sandipan Samaddar ◽  
Poulami Chatterjee ◽  
Jaak Truu ◽  
Rangasamy Anandham ◽  
Sukjin Kim ◽  
...  

2020 ◽  
Author(s):  
Zhijian Zhang ◽  
Hong-Yi Li ◽  
Hang Wang ◽  
Xing-Hua Tao ◽  
Xian-Zhe Wang ◽  
...  

Abstract Background: Rice paddy soil-associated microbiota participate in biogeochemical processes that underpin rice yield and soil sustainability, yet continental-scale biogeographic patterns of paddy soil microbiota remain elusive. Here, the soil bacteria of four typical Chinese rice-growing regions were characterized over large-scale space and compared with adjacent non-paddy soils.Results: The geographic patterns of paddy soil bacteria were significantly different from non-paddy soils, with lower alpha diversity, unique taxonomic and functional composition, and distinct co-occurrence network topology. Both stochastic and deterministic processes shaped soil bacteria assembly, but paddy exhibited a stronger deterministic signature than non-paddy samples, especially due to the roles of climate determinants. The continental biogeographic variance in bacterial community structure was driven by the competition between two mutually-exclusive bacterial modules in the co-occurrence network, and suggested antagonistic species-to-species interactions as potential selective forces may greatly shape their community structures. Keystone taxa identified in network models, such as Actinobacteria, Chloroflexi, and Proteobacteria, were demonstrated to be preferentially affected by environmental factors than other community members and showed high sensitivity to environmental changes, whereby the environmental factors greatly shaped the paddy soil bacterial communities by leveraging changes in keystones.Conclusions: The strong interplay between biotic/abiotic factors may greatly construct paddy soil microbial community and their uniqueness as compared with non-paddy soils. Microbial biogeographical analyses with novel insights into underlying determinants investigated on intensively-cultivated paddy field soils may aid in elucidating microbial changes subjected to land-use changes following the transformation between natural and agro-ecosystem, and also facilitate microbial community manipulation for better crop productivity and soil sustainability worldwide.


Author(s):  
Bocong Huang ◽  
Jian Long ◽  
Hongkai Liao ◽  
Lingfei Liu ◽  
Juan Li ◽  
...  

Research of bacterial communities and metabolism potential of paddy soils contaminated by antimony (Sb) and arsenic (As) are vital to acquire understanding for their bioremediation. Here, the relative abundance of Sb and As metabolism genes, the diversity and composition of the bacterial community, and the influences of geochemical properties and the bacterial community and metabolism potential have been researched by Tax4Fun2 prediction and high-throughput sequencing. LEfSe (linear discriminant analysis effect size) analysis shown different taxa were enriched in dissimilar soil layers. RDA (Redundancy analysis) and relative importance analysis indicated the main properties including total sulfur (TS), total organic carbon (TOC), pH, and the bioavailable fractions of Sb and As affects the bacterial community, which Sbrec, Astot, and Asrec had greater impact on the bacterial taxonomic community. For example, Asrec, Astot, and Sbrec had a positive correlation with Chloroflexi and Rokubacteria, but negatively correlated with Proteobacteria and Actinobacteria. Obtaining metabolic function genes by using the tax prediction method. RDA, relative importance analysis, and co-occurrence network analysis showed the geochemical properties and bacterial community affected Sb and As related bacterial functions. The partial least squares path model (PLS-PM) analysis indicated Sb and As contamination fractions had negative effects on ecological function, bacterial community structure had positive influences on ecological function, and the direct effects of geochemical properties on ecological function was greater than community structure. The direct impact of As contamination fractions on bacterial community structure was greater than Sb, while the direct impact of Sb contamination fractions on bacterial function was more remarkable than As. Obviously, this study provides a scientific basis for the potential of biochemical remediation of Sb and As contamination in paddy soils profile.


Author(s):  
Yaoben Lin ◽  
Yanmei Ye ◽  
Shuchang Liu ◽  
Jiahao Wen ◽  
Danling Chen

Farmland consolidation is an effective tool to improve farmland infrastructures, soil quality, and sustain a healthy farmland ecosystem and rural population, generating contributions to food security and regional sustainable development. Previous studies showed that farmland consolidation regulates soil physical and chemical properties. Soil microorganisms also play an important role in soil health and crop performance; however, few studies reported how farmland consolidation influence soil microecology. Here, we used DNA sequencing technology to compare bacterial community structure in farmlands with and without consolidation. DNA sequencing technology is the most advanced technology used to obtain biological information in the world, and it has been widely used in the research of soil micro-ecological environment. In September 2018, we collected soil samples in Jiashan County, Zhejiang Province, China, and used DNA sequence technology to compare the bacterial community structure in farmlands with and without consolidation. Our results found that (1) farmland consolidation had significant impacts on soil microbial characteristics, which were mainly manifested as changes in microbial biomass, microbial diversity and community structure. Farmland consolidation can increase the relative abundance of the three dominant bacteria phyla and the three fungal dominant phyla, but it also negatively affects the relative abundance of the six dominant bacteria phyla and the three fungal dominant phyla. (2) Farmland consolidation had an indirect impact on soil bacterial community structure by adjusting the soil physical and chemical properties. (3) The impact of heavy metals on bacterial community structure varied significantly under different levels of heavy metal pollution in farmland consolidation areas. There were 6, 3, 3, and 5 bacterial genera that had significant correlations with heavy metal content in cultivated land with low pollution, light pollution, medium pollution, and heavy pollution, respectively. The number of heavy metal-tolerant bacteria in the soil generally increased first and then decreased under heavy metal polluted conditions. Our study untangled the relationship between varied farmland consolidation strategies and bacteria through soil physcicochemical properties and metal pollution conditions. Our results can guide farmland consolidation strategies and sustain soil health and ecological balance in agriculture.


Sign in / Sign up

Export Citation Format

Share Document