scholarly journals Sex and occupation time influence niche space of a recovering keystone predator

2019 ◽  
Vol 9 (6) ◽  
pp. 3321-3334 ◽  
Author(s):  
Erin U. Rechsteiner ◽  
Jane C. Watson ◽  
M. Tim Tinker ◽  
Linda M. Nichol ◽  
Matthew J. Morgan Henderson ◽  
...  
2020 ◽  
Vol 637 ◽  
pp. 59-69 ◽  
Author(s):  
J Sullivan-Stack ◽  
BA Menge

Top predator decline has been ubiquitous across systems over the past decades and centuries, and predicting changes in resultant community dynamics is a major challenge for ecologists and managers. Ecological release predicts that loss of a limiting factor, such as a dominant competitor or predator, can release a species from control, thus allowing increases in its size, density, and/or distribution. The 2014 sea star wasting syndrome (SSWS) outbreak decimated populations of the keystone predator Pisaster ochraceus along the Oregon coast, USA. This event provided an opportunity to test the predictions of ecological release across a broad spatial scale and determine the role of competitive dynamics in top predator recovery. We hypothesized that after P. ochraceus loss, populations of the subordinate sea star Leptasterias sp. would grow larger, more abundant, and move downshore. We based these predictions on prior research in Washington State showing that Leptasterias sp. competed with P. ochraceus for food. Further, we predicted that ecological release of Leptasterias sp. could provide a bottleneck to P. ochraceus recovery. Using field surveys, we found no clear change in density or distribution in Leptasterias sp. populations post-SSWS, and decreases in body size. In a field experiment, we found no evidence of competition between similar-sized Leptasterias sp. and P. ochraceus. Thus, the mechanisms underlying our predictions were not in effect along the Oregon coast, which we attribute to differences in habitat overlap and food availability between the 2 regions. Our results suggest that response to the loss of a dominant competitor can be unpredictable even when based in theory and previous research.


1999 ◽  
Vol 02 (02) ◽  
pp. 153-178 ◽  
Author(s):  
JULIEN-N. HUGONNIER

In this paper, we undertake a study of occupation time derivatives that is derivatives for which the pay-off is contingent on both the terminal asset's price and one of its occupation times. To this end we use a formula of M. Kac to compute the joint law of Brownian motion and one of its occupation times. General pricing formulas for occupation time derivatives are established and it is shown that any occupation time derivative can be continuously hedged by a controlled portfolio of the basic securities. We further study some examples of interest including cumulative barrier options and discuss some numerical implementations.


Ecology ◽  
2008 ◽  
Vol 89 (7) ◽  
pp. 2005-2018 ◽  
Author(s):  
Sergio A. Navarrete ◽  
Tatiana Manzur

PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e104658 ◽  
Author(s):  
Cristián J. Monaco ◽  
David S. Wethey ◽  
Brian Helmuth

Sign in / Sign up

Export Citation Format

Share Document