niche space
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 42)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
pp. 462-487

Globally, adults engage in various forms of high-investment adventure play in their leisure. Sometimes, these are complementary to their careers, their self-identities, and their social circles. This type of adventure play requires investments in learning, KSA (knowledge, skills, and abilities) development, social network development, time, moneys, reputation, and other costs. It may involve some level of risk-taking. This work explores this niche space of “hard” adventure play as expressed on the Social Web as a type of peer-shared teaching and learning, with a focus on “luxury geocaching” as the activity.


2021 ◽  
Author(s):  
Ignacio Quintero ◽  
Marc A. Suchard ◽  
Walter Jetz

How and why lineages evolve along niche space as they diversify and adapt to different environments is fundamental to evolution. Progress has been hampered by the difficulties of linking a comprehensive empirical characterization of species niches with flexible evolutionary models that describe their evolution. Consequently, the relative influence of external episodic and biotic factors remains poorly understood. Here we characterize species' two-dimensional temperature and precipitation niche space occupied (i.e., species niche envelope) as complex geometries and assess their evolution across a large vertebrate radiation (all Aves) using a model that captures heterogeneous evolutionary rates on time-calibrated phylogenies. We find that extant birds coevolved from warm, mesic climatic niches into colder and drier environments and responded to the K-Pg boundary with a dramatic increase in disparity. Contrary to expectations of subsiding rates of niche evolution as lineages diversify, our results show that overall rates have increased steadily, with some lineages experiencing exceptionally high evolutionary rates, associated with colonization of novel niche spaces, and others showing niche stasis. Both competition- and environmental change-driven niche evolution transpire and result in highly heterogeneous rates near the present. Our findings share the limitations of all work based purely on extant taxa but highlight the growing ecological and conservation insights arising from the model-based integration of increasingly comprehensive and robust environmental and phylogenetic information.


Author(s):  
Lo M. Sosinski ◽  
Christian Martin H ◽  
Kerri A. Neugebauer ◽  
Lydia-Ann J. Ghuneim ◽  
Douglas V. Guzior ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. S248
Author(s):  
R. Quinn ◽  
L. Sosinski ◽  
R. Quinn ◽  
K. Neugebauer ◽  
L. Ghuneim ◽  
...  
Keyword(s):  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12191
Author(s):  
Marko Gómez-Hernández ◽  
Emily Avendaño-Villegas ◽  
María Toledo-Garibaldi ◽  
Etelvina Gándara

Macromycetes are a group of fungi characterized by the production of fruit bodies and are highly relevant in most terrestrial ecosystems as pathogens, mutualists, and organic matter decomposers. Habitat transformation can drastically alter macromycete communities and diminish the contribution of these organisms to ecosystem functioning; however, knowledge on the effect of urbanization on macrofungal communities is scarce. Diversity metrics based on functional traits of macromycete species have shown to be valuable tools to predict how species contribute to ecosystem functionality since traits determine the performance of species in ecosystems. The aim of this study was to assess patterns of species richness, functional diversity, and composition of macrofungi in an urban ecosystem in Southwest Mexico, and to identify microclimatic, environmental, and urban factors related to these patterns in order to infer the effect of urbanization on macromycete communities. We selected four oak forests along an urbanization gradient and established a permanent sampling area of 0.1 ha at each site. Macromycete sampling was carried out every week from June to October 2017. The indices used to measure functional diversity were functional richness (FRic), functional divergence (FDig), and functional evenness (FEve). The metric used to assess variation of macrofungal ecological function along the study area was the functional value. We recorded a total of 134 macromycete species and 223 individuals. Our results indicated a decline of species richness with increased urbanization level related mainly to microclimatic variables, and a high turnover of species composition among study sites, which appears to be related to microclimatic and urbanization variables. FRic decreased with urbanization level, indicating that some of the available resources in the niche space within the most urbanized sites are not being utilized. FDig increased with urbanization, which suggests a high degree of niche differentiation among macromycete species within communities in urbanized areas. FEve did not show notable differences along the urbanization gradient, indicating few variations in the distribution of abundances within the occupied sections of the niche space. Similarly, the functional value was markedly higher in the less urbanized site, suggesting greater performance of functional guilds in that area. Our findings suggest that urbanization has led to a loss of macromycete species and a decrease in functional diversity, causing some sections of the niche space to be hardly occupied and available resources to be under-utilized, which could, to a certain extent, affect ecosystem functioning and stability.


Oecologia ◽  
2021 ◽  
Author(s):  
Débora Reis de Carvalho ◽  
Jed P. Sparks ◽  
Alexander S. Flecker ◽  
Carlos Bernardo Mascarenhas Alves ◽  
Marcelo Zacharias Moreira ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nicolás Pelegrin ◽  
Kirk O. Winemiller ◽  
Laurie J. Vitt ◽  
Daniel B. Fitzgerald ◽  
Eric R. Pianka

Abstract Background Environmental conditions on Earth are repeated in non-random patterns that often coincide with species from different regions and time periods having consistent combinations of morphological, physiological and behavioral traits. Observation of repeated trait combinations among species confronting similar environmental conditions suggest that adaptive trait combinations are constrained by functional tradeoffs within or across niche dimensions. In an earlier study, we assembled a high-resolution database of functional traits for 134 lizard species to explore ecological diversification in relation to five fundamental niche dimensions. Here we expand and further examine multivariate relationships in that dataset to assess the relative influence of niche dimensions on the distribution of species in 6-dimensional niche space and how these may deviate from distributions generated from null models. We then analyzed a dataset with lower functional-trait resolution for 1023 lizard species that was compiled from our dataset and a published database, representing most of the extant families and environmental conditions occupied by lizards globally. Ordinations from multivariate analysis were compared with null models to assess how ecological and historical factors have resulted in the conservation, divergence or convergence of lizard niches. Results Lizard species clustered within a functional niche volume influenced mostly by functional traits associated with diet, activity, and habitat/substrate. Consistent patterns of trait combinations within and among niche dimensions yielded 24 functional groups that occupied a total niche space significantly smaller than plausible spaces projected by null models. Null model tests indicated that several functional groups are strongly constrained by phylogeny, such as nocturnality in the Gekkota and the secondarily acquired sit-and-wait foraging strategy in Iguania. Most of the widely distributed and species-rich families contained multiple functional groups thereby contributing to high incidence of niche convergence. Conclusions Comparison of empirical patterns with those generated by null models suggests that ecological filters promote limited sets of trait combinations, especially where similar conditions occur, reflecting both niche convergence and conservatism. Widespread patterns of niche convergence following ancestral niche diversification support the idea that lizard niches are defined by trait-function relationships and interactions with environment that are, to some degree, predictable and independent of phylogeny.


2021 ◽  
Vol 17 (7) ◽  
pp. e1008650
Author(s):  
Ilan N. Rubin ◽  
Iaroslav Ispolatov ◽  
Michael Doebeli

One of the oldest and most persistent questions in ecology and evolution is whether natural communities tend to evolve toward saturation and maximal diversity. Robert MacArthur’s classical theory of niche packing and the theory of adaptive radiations both imply that populations will diversify and fully partition any available niche space. However, the saturation of natural populations is still very much an open area of debate and investigation. Additionally, recent evolutionary theory suggests the existence of alternative evolutionary stable states (ESSs), which implies that some stable communities may not be fully saturated. Using models with classical Lotka-Volterra ecological dynamics and three formulations of evolutionary dynamics (a model using adaptive dynamics, an individual-based model, and a partial differential equation model), we show that following an adaptive radiation, communities can often get stuck in low diversity states when limited by mutations of small phenotypic effect. These low diversity metastable states can also be maintained by limited resources and finite population sizes. When small mutations and finite populations are considered together, it is clear that despite the presence of higher-diversity stable states, natural populations are likely not fully saturating their environment and leaving potential niche space unfilled. Additionally, within-species variation can further reduce community diversity from levels predicted by models that assume species-level homogeneity.


Author(s):  
Hector Figueroa ◽  
Hannah Marx ◽  
Maria Beatriz de Souza Cortez ◽  
Charles Grady ◽  
Nicholas J. Engle-Wrye ◽  
...  

Aim Higher elevation habitats contribute substantially to global biodiversity. Nevertheless, we know comparatively little about how diversity patterns differ among alpine and montane communities across different mountain ranges. Here, we characterized the realized niche space of American seed plants to ask whether or not montane or alpine community compositions define climatically distinct species pools at this regional scale. Location Americas. Time Period Contemporary. Major taxa studied Seed plants. Methods We assembled a niche model dataset of 72,372 American seed plants based on digitized and georeferenced specimen records. We used this dataset to quantify occupied abiotic niche space with regards to temperature, precipitation, and elevation. This approach further permitted differentiation of higher-elevation specialists (i.e., ranges centered at high elevations) from generalists (i.e., ranges centered at lower elevations but extending into mountain areas). Results Montane communities did not differ from the regional species pool in terms of richness patterns, occupied climatic niche space, or niche breadth. In contrast, alpine communities were characterized by a bimodal latitudinal diversity gradient, drastically reduced climatic niche space, and broader temperature but narrower precipitation niche breadth. Alpine generalists further showed statistically significant differences in temperature, but not precipitation, niche breadth from both alpine specialists and lowland taxa. We also highlight non-alpine species whose climatic niche space otherwise overlapped with that of alpine plants. These species were geographically concentrated in the southern US and Mexico, tended to have a greater fraction of their ranges in frost-exposed mountain foothills, and less of their range in lowland, frost-free, areas, compared to other non-alpine species. Main conclusions These results suggest that ecological and physiological barriers, rather than dispersal limitation might better explain alpine community assembly and that alpine, but not montane, communities form a climatically distinct species pool in the Americas.


Sign in / Sign up

Export Citation Format

Share Document