scholarly journals Identification of candidate loci for adaptive phenotypic plasticity in natural populations of spadefoot toads

2020 ◽  
Vol 10 (16) ◽  
pp. 8976-8988 ◽  
Author(s):  
Nicholas A. Levis ◽  
Emily M. X. Reed ◽  
David W. Pfennig ◽  
Martha O. Burford Reiskind
2021 ◽  
Author(s):  
Martin Eriksson ◽  
Marina Rafajlović

It has been argued that adaptive phenotypic plasticity may facilitate range expansions over spatially and temporally variable environments. However, plasticity may induce fitness costs. This may hinder the evolution of plasticity. Earlier modelling studies examined the role of plasticity during range expansions of populations with fixed genetic variance. However, genetic variance evolves in natural populations. This may critically alter model outcomes. We ask: How does the capacity for plasticity in populations with evolving genetic variance alter range margins that populations without the capacity for plasticity are expected to attain? We answered this question using computer simulations and analytical approximations. We found a critical plasticity cost above which the capacity for plasticity has no impact on the expected range of the population. Below the critical cost, by contrast, plasticity facilitates range expansion, extending the range in comparison to that expected for populations without plasticity. We further found that populations may evolve plasticity to buffer temporal environmental fluctuations, but only when the plasticity cost is below the critical cost. Thus, the cost of plasticity is a key factor involved in range expansions of populations with the potential to express plastic response in the adaptive trait.


1991 ◽  
Vol 69 (1) ◽  
pp. 34-38 ◽  
Author(s):  
M. Pigliucci ◽  
M. G. Politi ◽  
D. Bellincampi

Implications of phenotypic plasticity in a subspecific numerical taxonomic study of Ornithogalum montanum Cyr. (Liliaceae) are discussed. Clones belonging to six natural populations were grown in a glasshouse, and their morphological response to three water dosages was analyzed by means of principal component analysis. PC-1 ranks the three groups of replicated populations, suggesting a high degree of phenotypic plasticity; on the other hand, PC-3 is almost environmentally independent. Proximities in the phenetic space are shown to be at least partially environmentally dependent, suggesting a reaction norm for the character correlation matrix. The results do not corroborate a previous recognition of six subspecies of O. montanum. Key words: phenotypic plasticity, numerical taxonomy, Ornithogalum, reaction norm, principal component analysis.


2020 ◽  
Author(s):  
Melanie Lindner ◽  
Veronika N. Laine ◽  
Irene Verhagen ◽  
Heidi M. Viitaniemi ◽  
Marcel E. Visser ◽  
...  

ABSTRACTClimate change significantly impacts natural populations, particularly phenology traits, like the seasonal onset of reproduction in birds. This impact is mainly via plastic responses in phenology traits to changes in the environment, but the molecular mechanism mediating this plasticity remains elusive. Epigenetic modifications can mediate plasticity and consequently constitute promising candidates for mediating phenology traits. Here, we used genome-wide DNA methylation profiles of individual great tit (Parus major) females that we blood sampled repeatedly throughout the breeding season. We demonstrate rapid and directional variation in DNA methylation within the regulatory region of genes known to play key roles in avian reproduction that are in line with observed changes in gene expression in chickens. Our findings provide an important step towards unraveling the molecular mechanism mediating a key life history trait, an essential knowledge-gap for understanding how natural populations may cope with future climate change.IMPACT SUMMARYNatural populations are increasingly challenged by changing environmental conditions like global increases in temperature. A key way for species to adapt to global warming is via phenotypic plasticity, i.e. the ability to adjust the expression of traits to the environment. We, however, know little about how the environment can interact with an organism’s genetic make-up to shape its trait value. Epigenetic marks are known to vary with the environment and can modulate the expression of traits without any change in the genetic make-up and therefore have the potential to mediate phenotypic plasticity.To study the role of epigenetics for phenotypic plasticity, we here focus on the great tit (Parus major), a species that is strongly affected by global warming and plastic for temperature in an essential phenology trait, the seasonal onset of egg laying. As a first step, we investigated whether great tit females show within-individual and short-term variation in DNA methylation that corresponds to changes in the reproductive state of females. We therefore housed breeding pairs in climate-controlled aviaries to blood sample each female repeatedly throughout the breeding season and used these repeated samples for methylation profiling.We found rapid and directional variation in DNA methylation at the time females prepared to initiate egg laying that is located within the regulatory region of genes that have previously described functions for avian reproduction. Although future work is needed to establish a causal link between the observed temporal variation in DNA methylation and the onset of reproduction in female great tits, our work highlights the potential role for epigenetic modifications in mediating an essential phenology trait that is sensitive to temperatures.


1995 ◽  
Vol 10 (5) ◽  
pp. 212-217 ◽  
Author(s):  
Sara Via ◽  
Richard Gomulkiewicz ◽  
Gerdien De Jong ◽  
Samuel M. Scheiner ◽  
Carl D. Schlichting ◽  
...  

2010 ◽  
Vol 365 (1540) ◽  
pp. 593-603 ◽  
Author(s):  
Armin P. Moczek

Phenotypic plasticity in general and polyphenic development in particular are thought to play important roles in organismal diversification and evolutionary innovation. Focusing on the evolutionary developmental biology of insects, and specifically that of horned beetles, I explore the avenues by which phenotypic plasticity and polyphenic development have mediated the origins of novelty and diversity. Specifically, I argue that phenotypic plasticity generates novel targets for evolutionary processes to act on, as well as brings about trade-offs during development and evolution, thereby diversifying evolutionary trajectories available to natural populations. Lastly, I examine the notion that in those cases in which phenotypic plasticity is underlain by modularity in gene expression, it results in a fundamental trade-off between degree of plasticity and mutation accumulation. On one hand, this trade-off limits the extent of plasticity that can be accommodated by modularity of gene expression. On the other hand, it causes genes whose expression is specific to rare environments to accumulate greater variation within species, providing the opportunity for faster divergence and diversification between species, compared with genes expressed across environments. Phenotypic plasticity therefore contributes to organismal diversification on a variety of levels of biological organization, thereby facilitating the evolution of novel traits, new species and complex life cycles.


Sign in / Sign up

Export Citation Format

Share Document