adaptive phenotypic plasticity
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 21)

H-INDEX

31
(FIVE YEARS 2)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 80
Author(s):  
Wei Zhou ◽  
Wenlong Chen

Food shortages severely reduce the prospects of insect survival in natural settings, including in the case of herbivorous insects. However, the early starvation experience of some insects has positive effects throughout their entire lifespan. It is important to discuss the effects of refeeding and host plants on the capacity of herbivorous insects to adapt to starvation and low temperatures, considering that starvation resistance is expected to show some degree of adaptive phenotypic plasticity. We tested the relationship between host plant, starvation, and the supercooling capacity of the invasive pest Corythucha marmorata. In particular, we highlighted how early starvation affects the refeeding and recovery phases. Among the various range of hosts, the chrysanthemum lace bug has the fastest growth rate on Helianthus annuus, and the strongest supercooling capacity on Symphyotrichum novi-belgii. Especially, starvation for 2 days increases the rates of survival, development, and number of eggs upon refeeding, in comparison to no starvation. A 3-day starvation period in the nymphal stage significantly increased the supercooling capacity of 5th instar nymphs and adults, as observed in our study.


Author(s):  
R Sierra-de-Grado ◽  
V Pando ◽  
J Voltas ◽  
R Zas ◽  
J Majada ◽  
...  

Abstract Although the straightening capacity of the stem is key for light capture and mechanical stability in forest trees, little is known about its adaptive implications. Assuming that stem straightening is costly, trade-offs are expected with competing processes such as growth, maintenance and defences. We established a manipulative experiment in a common garden of Pinus pinaster including provenances typically showing either straight-stemmed or crooked-stemmed phenotypes. We imposed a bending up to 35º on plants aged nine years of both provenance groups and followed the straightening kinetics and shoot elongation after releasing. Eight months later, we destructively assessed biomass partitioning, reaction wood, wood microdensity, xylem reserve carbohydrates and phloem secondary metabolites. The experimental bending and release caused significant, complex changes with a marked difference between straight- and crooked-type plants. The straight-type recovered verticality faster and to a higher degree and developed more compression wood, while displaying a transitory delay in shoot elongation, reducing resource allocation to defences and maintaining the levels of non-structural carbohydrates compared to the crooked type. This combination of responses indicates the existence of intraspecific divergence in the reaction to mechanical stresses which may be related to different adaptive phenotypic plasticity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christian Schano ◽  
Carole Niffenegger ◽  
Tobias Jonas ◽  
Fränzi Korner-Nievergelt

AbstractTo track peaks in resource abundance, temperate-zone animals use predictive environmental cues to rear their offspring when conditions are most favourable. However, climate change threatens the reliability of such cues when an animal and its resource respond differently to a changing environment. This is especially problematic in alpine environments, where climate warming exceeds the Holarctic trend and may thus lead to rapid asynchrony between peaks in resource abundance and periods of increased resource requirements such as reproductive period of high-alpine specialists. We therefore investigated interannual variation and long-term trends in the breeding phenology of a high-alpine specialist, the white-winged snowfinch, Montifringilla nivalis, using a 20-year dataset from Switzerland. We found that two thirds of broods hatched during snowmelt. Hatching dates positively correlated with April and May precipitation, but changes in mean hatching dates did not coincide with earlier snowmelt in recent years. Our results offer a potential explanation for recently observed population declines already recognisable at lower elevations. We discuss non-adaptive phenotypic plasticity as a potential cause for the asynchrony between changes in snowmelt and hatching dates of snowfinches, but the underlying causes are subject to further research.


2021 ◽  
Vol 78 (5) ◽  
pp. 347-359
Author(s):  
E.L. Kordyum ◽  
◽  
D.V. Dubyna ◽  

In recent decades, knowledge about the role of epigenetic regulation of gene expression in plant responses to external stimuli and in adaptation of plants to adverse environmental fluctuations have extended significantly. DNA methylation is considered as the main molecular mechanism that provides genomic information and contributes to the understanding of the molecular basis of phenotypic variations based on epigenetic modifications. Unfortunately, the vast majority of research in this area has been performed on the model species Arabidopsis thaliana. The development of the methylation-sensitive amplified polymorphism (MSAP) method has made it possible to implement the large-scale detection of DNA methylation alterations in wild non-model and agricultural plants with large and highly repetitive genomes in natural and manipulated habitats. The article presents current information on DNA methylation in species of natural communities and crops and its importance in plant development and adaptive phenotypic plasticity, along with brief reviews of current ideas about adaptive phenotypic plasticity and epigenetic regulation of gene expression. The great potential of further studies of the epigenetic role in phenotypic plasticity of a wide range of non-model species in natural populations and agrocenoses for understanding the molecular mechanisms of plant existence in the changing environment in onto- and phylogeny, directly related to the key tasks of forecasting the effects of global warming and crop selection, is emphasized. Specific taxa of the Ukrainian flora, which, in authors’ opinion, are promising and interesting for this type of research, are recommended.


2021 ◽  
Author(s):  
Martin Eriksson ◽  
Marina Rafajlović

It has been argued that adaptive phenotypic plasticity may facilitate range expansions over spatially and temporally variable environments. However, plasticity may induce fitness costs. This may hinder the evolution of plasticity. Earlier modelling studies examined the role of plasticity during range expansions of populations with fixed genetic variance. However, genetic variance evolves in natural populations. This may critically alter model outcomes. We ask: How does the capacity for plasticity in populations with evolving genetic variance alter range margins that populations without the capacity for plasticity are expected to attain? We answered this question using computer simulations and analytical approximations. We found a critical plasticity cost above which the capacity for plasticity has no impact on the expected range of the population. Below the critical cost, by contrast, plasticity facilitates range expansion, extending the range in comparison to that expected for populations without plasticity. We further found that populations may evolve plasticity to buffer temporal environmental fluctuations, but only when the plasticity cost is below the critical cost. Thus, the cost of plasticity is a key factor involved in range expansions of populations with the potential to express plastic response in the adaptive trait.


2021 ◽  
Vol 75 (10) ◽  
Author(s):  
Castellano Sergio ◽  
Racca Luca ◽  
Friard Olivier

Abstract Tadpoles can respond to perceived predation risk by adjusting their life history, morphology, and behavior in an adaptive way. Adaptive phenotypic plasticity can evolve by natural selection only if there is variation in reaction norms and if this variation is, at least in part, heritable. To provide insights into the evolution of adaptive phenotypic plasticity, we analyzed the environmental and parental components of variation in predator-induced life history (age and size at metamorphosis), morphology (tail depth), and behavior of Italian treefrog tadpoles (Hyla intermedia). Using an incomplete factorial design, we raised tadpoles either with or without caged predators (dragonfly larvae, gen. Aeshna) and, successively, we tested them in experimental arenas either with or without caged predators. Results provided strong evidence for an environmental effect on all three sets of characters. Tadpoles raised with caged predators (dragonfly larvae, gen. Aeshna) metamorphosed earlier (but at a similar body size) and developed deeper tails than their fullsib siblings raised without predators. In the experimental arenas, all tadpoles, independent of their experience, flexibly changed their activity and position, depending on whether the cage was empty or contained the predator. Tadpoles of the two experimental groups, however, showed different responses: those raised with predators were always less active than their predator-naive siblings and differences slightly increased in the presence of predators. Besides this strong environmental component of phenotypic variation, results provided evidence also for parental and parental-by-environment effects, which were strong on life-history, but weak on morphology and behavior. Interestingly, additive parental effects were explained mainly by dams. This supports the hypothesis that phenotypic plasticity might mainly depend on maternal effects and that it might be the expression of condition-dependent mechanisms. Significance statement Animals, by plastically adjusting their phenotypes to the local environments, can often sensibly improve their chances of survival, suggesting the hypothesis that phenotypic plasticity evolved by natural selection. We test this hypothesis in the Italian treefrog tadpoles, by investigating the heritable variation in the plastic response to predators (dragonfly larvae). Using an incomplete factorial common-garden experiment, we showed that tadpoles raised with predators metamorphosed earlier (but at similar body size), developed deeper tails, and were less active than their siblings raised without predators. The plastic response varied among families, but variation showed a stronger maternal than paternal component. This suggests that plasticity might largely depend on epigenetic factors and be the expression of condition-dependent mechanisms.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alexander Lalejini ◽  
Austin J. Ferguson ◽  
Nkrumah A. Grant ◽  
Charles Ofria

Fluctuating environmental conditions are ubiquitous in natural systems, and populations have evolved various strategies to cope with such fluctuations. The particular mechanisms that evolve profoundly influence subsequent evolutionary dynamics. One such mechanism is phenotypic plasticity, which is the ability of a single genotype to produce alternate phenotypes in an environmentally dependent context. Here, we use digital organisms (self-replicating computer programs) to investigate how adaptive phenotypic plasticity alters evolutionary dynamics and influences evolutionary outcomes in cyclically changing environments. Specifically, we examined the evolutionary histories of both plastic populations and non-plastic populations to ask: (1) Does adaptive plasticity promote or constrain evolutionary change? (2) Are plastic populations better able to evolve and then maintain novel traits? And (3), how does adaptive plasticity affect the potential for maladaptive alleles to accumulate in evolving genomes? We find that populations with adaptive phenotypic plasticity undergo less evolutionary change than non-plastic populations, which must rely on genetic variation from de novo mutations to continuously readapt to environmental fluctuations. Indeed, the non-plastic populations undergo more frequent selective sweeps and accumulate many more genetic changes. We find that the repeated selective sweeps in non-plastic populations drive the loss of beneficial traits and accumulation of maladaptive alleles, whereas phenotypic plasticity can stabilize populations against environmental fluctuations. This stabilization allows plastic populations to more easily retain novel adaptive traits than their non-plastic counterparts. In general, the evolution of adaptive phenotypic plasticity shifted evolutionary dynamics to be more similar to that of populations evolving in a static environment than to non-plastic populations evolving in an identical fluctuating environment. All natural environments subject populations to some form of change; our findings suggest that the stabilizing effect of phenotypic plasticity plays an important role in subsequent adaptive evolution.


2021 ◽  
Author(s):  
Alexander M Lalejini ◽  
Austin J Ferguson ◽  
Nkrumah A Grant ◽  
Charles Ofria

Fluctuating environmental conditions are ubiquitous in natural systems, and populations have evolved various strategies to cope with such fluctuations. The particular mechanisms that evolve profoundly influence subsequent evolutionary dynamics. One such mechanism is phenotypic plasticity, which is the ability of a single genotype to produce alternate phenotypes in an environmentally dependent context. Here, we use digital organisms (self-replicating computer programs) to investigate how adaptive phenotypic plasticity alters evolutionary dynamics and influences evolutionary outcomes in cyclically changing environments. Specifically, we examined the evolutionary histories of both plastic populations and non-plastic populations to ask: (1) Does adaptive plasticity promote or constrain evolutionary change? (2) Are plastic populations better able to evolve and then maintain novel traits? And (3), how does adaptive plasticity affect the potential for maladaptive alleles to accumulate in evolving genomes? We find that populations with adaptive phenotypic plasticity undergo less evolutionary change than non-plastic populations, which must rely on genetic variation from de novo mutations to continuously readapt to environmental fluctuations. Indeed, the non-plastic populations undergo more frequent selective sweeps and accumulate many more genetic changes. We find that the repeated selective sweeps in non-plastic populations drive the loss of beneficial traits and accumulation of maladaptive alleles via deleterious hitchhiking, whereas phenotypic plasticity can stabilize populations against environmental fluctuations. This stabilization allows plastic populations to more easily retain novel adaptive traits than their non-plastic counterparts. In general, the evolution of adaptive phenotypic plasticity shifted evolutionary dynamics to be more similar to that of populations evolving in a static environment than to non-plastic populations evolving in an identical fluctuating environment. All natural environments subject populations to some form of change; our findings suggest that the stabilizing effect of phenotypic plasticity plays an important role in subsequent adaptive evolution.


Sign in / Sign up

Export Citation Format

Share Document