black queen cell virus
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 3)

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 963
Author(s):  
Anna Maria Gajda ◽  
Ewa Danuta Mazur ◽  
Andrzej Marcin Bober ◽  
Michał Czopowicz

Nosema ceranae is a relatively new pathogen of the honeybee (Apis mellifera) and the course of type C nosemosis (the disease that it causes) is not entirely known. In order to better understand the course and the consequences of this disease, laboratory experiments were performed. They aimed to compare the course of N. ceranae infection with the course of Nosema apis infection, taking its influence on the black queen cell virus (BQCV) into account. Determination of the quantity of N. ceranae and BQCV genetic material in laboratory tests was performed using real-time PCR. In mixed Nosema infections, N. ceranae “wins” the competition and manages to outnumber N. apis significantly. BQCV exacerbates the course of both A and C nosemoses, but the data shows that in the case of nosemosis C and this viral infection, the mortality rate was the highest from all examined groups. Obtained results show that N. ceranae is more pathogenic for A. mellifera than N. apis, and the course of type C nosemosis is much heavier, which results in the shortened life spans of bees, and in connection with BQCV it becomes even more dangerous to bees.


2021 ◽  
Vol 15 (1) ◽  
pp. 58-66
Author(s):  
Chunying Yuan ◽  
Xuejian Jiang ◽  
Man Liu ◽  
Sa Yang ◽  
Shuai Deng ◽  
...  

Objective: In the absence of known clinical symptoms, viruses were considered to be the most probable key pathogens of honey bee. Therefore, the aim of this study was to investigate the prevalence and distribution of honey bee viruses in managed Apis mellifera and Apis cerana in China. Methods: We conducted a screening of 8 honey bee viruses on A. mellifera and A. cerana samples collected from 54 apiaries from 13 provinces in China using RT-PCR. Results: We found that the types and numbers of viral species significantly differed between A. mellifera and A. cerana. Black Queen Cell Virus (BQCV), Chronic Bee Paralysis Virus (CBPV), Apis mellifera filamentous virus (AmFV), and Kakugo virus (DWV-A/KV) were the primary viruses found in A. mellifera colonies, whereas Chinese Sacbrood Bee Virus (CSBV) and Sacbrood Bee Virus (SBV) were the primary viruses found in A. cerana. The percentage infection of BQCV and CSBV were 84.6% and 61.6% in all detected samples. We first detected the occurrences of Varroa destructor virus-1 (VDV-1 or DWV-B) and DWV-A/KV in China but not ABPV in both A. mellifera and A. cerana. Conclusion: This study showed that BQCV and CSBV are the major threat to investigated A. mellifera and A. cerana colonies.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 884
Author(s):  
Metka Pislak Ocepek ◽  
Ivan Toplak ◽  
Urška Zajc ◽  
Danilo Bevk

Slovenia has a long tradition of beekeeping and a high density of honeybee colonies, but less is known about bumblebees and their pathogens. Therefore, a study was conducted to define the incidence and prevalence of pathogens in bumblebees and to determine whether there are links between infections in bumblebees and honeybees. In 2017 and 2018, clinically healthy workers of bumblebees (Bombus spp.) and honeybees (Apis mellifera) were collected on flowers at four different locations in Slovenia. In addition, bumblebee queens were also collected in 2018. Several pathogens were detected in the bumblebee workers using PCR and RT-PCR methods: 8.8% on acute bee paralysis virus (ABPV), 58.5% on black queen cell virus (BQCV), 6.8% on deformed wing virus (DWV), 24.5% on sacbrood bee virus (SBV), 15.6% on Lake Sinai virus (LSV), 16.3% on Nosema bombi, 8.2% on Nosema ceranae, 15.0% on Apicystis bombi and 17.0% on Crithidia bombi. In bumblebee queens, only the presence of BQCV, A. bombi and C. bombi was detected with 73.3, 26.3 and 33.3% positive samples, respectively. This study confirmed that several pathogens are regularly detected in both bumblebees and honeybees. Further studies on the pathogen transmission routes are required.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 808
Author(s):  
Ivana Tlak Gajger ◽  
Laura Šimenc ◽  
Ivan Toplak

To determine the presence and the prevalence of four different honeybee viruses (acute bee paralysis virus—ABPV, black queen cell virus—BQCV, chronic bee paralysis virus—CBPV, deformed wing virus—DWV) in wild bumblebees, pooled randomly selected bumblebee samples were collected from twenty-seven different locations in the territory of Croatia. All samples were prepared and examined using the RT-PCR methods for quantification of mentioned honeybee viruses. Determined prevalence (%) of identified positive viruses were in the following decreasing order: BQCV > DWV > ABPV, CBPV. Additionally, direct sequencing of samples positive for BQCV (n = 24) and DWV (n = 2) was performed, as well as a test of molecular phylogeny comparison with those available in GenBank. Selected positive field viruses’ strains showed 95.7 to 100% (BQCV) and 98.09% (DWV) nucleotide identity with previously detected and deposited honeybee virus strains in the geographic areas in Croatia and neighboring Slovenia. In this article, the first detection of four honeybee viruses with genetic characterization of high diversity strains circulating in wild bumblebees in Croatia is presented.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1310
Author(s):  
Ivan Toplak ◽  
Laura Šimenc ◽  
Metka Pislak Ocepek ◽  
Danilo Bevk

In recent years, there has been growing evidence that certain types of honeybee viruses could be transmitted between different pollinators. Within a voluntary monitoring programme, 180 honeybee samples (Apis mellifera carnica) were collected from affected apiaries between 2007 and 2018. Also from August 2017 to August 2018, a total 148 samples of healthy bumblebees (Bombus lapidarius, B. pascuorum, B. terrestris, B. lucorum, B. hortorum, B. sylvarum, B. humilis) were collected at four different locations in Slovenia, and all samples were tested by using RT-PCR methods for six honeybee viruses. Direct sequencing of a total 158 positive samples (acute bee paralysis virus (ABPV n = 33), black queen cell virus (BQCV n = 75), sacbrood bee virus (SBV n = 25) and Lake Sinai virus (LSV n = 25)) was performed from obtained RT-PCR products. The genetic comparison of identified positive samples of bumblebees and detected honeybee field strains of ABPV, BQCV, SBV, and LSV demonstrated 98.74% to 100% nucleotide identity between both species. This study not only provides evidence that honeybees and bumblebees are infected with genetically identical or closely related viral strains of four endemically present honeybee viruses but also detected a high diversity of circulating strains in bumblebees, similar as was observed among honeybees. Important new genetic data for endemic strains circulating in honeybees and bumblebees in Slovenia are presented.


2020 ◽  
Vol 40 (11) ◽  
pp. 892-897
Author(s):  
Domitila B. Chagas ◽  
Francielle Liz Monteiro ◽  
Lariane da S. Barcelos ◽  
Matheus Iuri Frühauf ◽  
Leonardo C. Ribeiro ◽  
...  

ABSTRACT: Bees are fundamental in several aspects, especially in relation to plant biodiversity and pollination. Recently, immense losses are being faced in the number of Brazilian colonies, mainly in southern states of the country, which has a strong beekeeping activity. There are indications that, among the reasons for the losses, pathogens that affect the health of bees may be involved. Among them, the microsporidium Nosema and the black queen cell virus (BQCV) stand out for their prevalence. In this study, 92 colonies of 17 apiaries from southern Brazil were evaluated for infection by Nosema ceranae, Nosema apis and BQCV. Nucleic acid extractions and cDNA synthesis were performed from adult bee samples, followed by Reverse Transcription Polymerase Chain Reaction (RT-PCR) and multiplex PCR. Eight BQCV positive samples were subjected to sequencing. The results showed that N. ceranae and BQCV are circulating in the Southern region of the country, which may be the reason for the loss of colonies. N. apis was not found. N. ceranae was found in 57.6% (53/92) of the colonies and BQCV in 32.6% (30/92). Co-infection was found in 25% (23/92) of the colonies studied, a factor that is suggested to be reducing the hosts’ longevity due to the synergistic action of the pathogens. The samples submitted to sequencing indicated similarity of 96.8 to 100% between them, in addition to strong similarity with sequences from Asia, United States, Germany and Peru. This study reports the circulation of N. ceranae and BQCV in apiaries in southern Brazil, in addition to being the first phylogenetic analysis of the Brazilian BQCV sequence.


2020 ◽  
Vol 9 (28) ◽  
Author(s):  
Raied Abou Kubaa ◽  
Annalisa Giampetruzzi ◽  
Rocco Addante ◽  
Maria Saponari

ABSTRACT In this study, we documented the complete coding genome sequence of a Black queen cell virus (BQCV) isolate from honey bees in Italy. This genome sequence illustrates a high similarity with other BQCV isolates reported worldwide and could provide insights into BQCV genome phylogeny and divergence.


Insects ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 382 ◽  
Author(s):  
Jessica L. Kevill ◽  
Katie Lee ◽  
Michael Goblirsch ◽  
Erin McDermott ◽  
David R. Tarpy ◽  
...  

Throughout a honey bee queen’s lifetime, she is tended to by her worker daughters, who feed and groom her. Such interactions provide possible horizontal transmission routes for pathogens from the workers to the queen, and as such a queen’s pathogen profile may be representative of the workers within a colony. To explore this further, we investigated known honey bee pathogen co-occurrence, as well as pathogen transmission from workers to queens. Queens from 42 colonies were removed from their source hives and exchanged into a second, unrelated foster colony. Worker samples were taken from the source colony on the day of queen exchange and the queens were collected 24 days after introduction. All samples were screened for Nosema spp., Trypanosome spp., acute bee paralysis virus (ABPV), black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), Israeli acute paralysis virus (IAPV), Lake Sinai virus (LSV), and deformed wing virus master variants (DWV-A, B, and C) using RT-qPCR. The data show that LSV, Nosema, and DWV-B were the most abundant pathogens in colonies. All workers (n = 42) were LSV-positive, 88% were Nosema-positive, whilst pathogen loads were low (<1 × 106 genome equivalents per pooled worker sample). All queens (n = 39) were negative for both LSV and Nosema. We found no evidence of DWV transmission occurring from worker to queen when comparing queens to foster colonies, despite DWV being present in both queens and workers. Honey bee pathogen presence and diversity in queens cannot be revealed from screening workers, nor were pathogens successfully transmitted to the queen.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 535 ◽  
Author(s):  
Yahya Al Naggar ◽  
Robert J. Paxton

Honey bees (Apis mellifera) can be infected by many viruses, some of which pose a major threat to their health and well-being. A critical step in the dynamics of a viral infection is its mode of transmission. Here, we compared for the first time the effect of mode of horizontal transmission of Black queen cell virus (BQCV), a ubiquitous and highly prevalent virus of A. mellifera, on viral virulence in individual adult honey bees. Hosts were exposed to BQCV either by feeding (representing direct transmission) or by injection into hemolymph (analogous to indirect or vector-mediated transmission) through a controlled laboratory experimental design. Mortality, viral titer and expression of three key innate immune-related genes were then quantified. Injecting BQCV directly into hemolymph in the hemocoel resulted in far higher mortality as well as increased viral titer and significant change in the expression of key components of the RNAi pathway compared to feeding honey bees BQCV. Our results support the hypothesis that mode of horizontal transmission determines BQCV virulence in honey bees. BQCV is currently considered a benign viral pathogen of adult honey bees, possibly because its mode of horizontal transmission is primarily direct, per os. We anticipate adverse health effects on honey bees if BQCV transmission becomes vector-mediated.


Sign in / Sign up

Export Citation Format

Share Document