scholarly journals Life‐history attributes of Arctic‐breeding birds drive uneven responses to environmental variability across different phases of the reproductive cycle

2021 ◽  
Author(s):  
Daniel R. Ruthrauff ◽  
Vijay P. Patil ◽  
Jerry W. Hupp ◽  
David H. Ward
Author(s):  
Daniel Ruthrauff ◽  
Vijay Patil ◽  
Jerry W. Hupp ◽  
David Ward

1. Animals exhibit varied life-history traits that reflect adaptive responses to their environments. For Arctic-breeding birds, traits like foraging guild, egg nutrient allocation, clutch size, and chick growth are predicted to be under increasing selection pressure due to rapid climate change and increasing environmental variability across high-latitude regions. 2. We compared four migratory birds (black brant [Branta bernicla nigricans], lesser snow geese [Chen caerulescens caerulescens], semipalmated sandpipers [Calidris pusilla], and Lapland longspurs [Calcarius lapponicus]) with varied life histories at an Arctic site in Alaska, USA, to understand how life-history traits help moderate environmental variability across different phases of the reproductive cycle. 3. We monitored aspects of reproductive performance related to the timing of breeding, reproductive investment, and chick growth from 2011–2018. 4. In response to early snow melt and warm temperatures, semipalmated sandpipers advanced their site arrival and bred in higher numbers, while brant and snow geese increased clutch sizes; all four species advanced their nest initiation dates. During chick rearing, longspur chicks were relatively resilient to environmental variation whereas warmer temperatures increased the growth rates of sandpiper chicks but reduced growth rates of snow goose goslings. These responses generally aligned with traits along the capital-income spectrum of nutrient acquisition and altricial-precocial modes of chick growth. Under a warming climate, the ability to mobilize endogenous reserves likely provides geese with relative flexibility to adjust the timing of breeding and the size of clutches. Warmer temperatures, however, may negatively affect the quality of herbaceous foods and slow gosling growth. 5. Species may possess traits that are beneficial during one phase of the reproductive cycle and others that may be detrimental at another phase, uneven responses that may be amplified with future climate warming. These results underscore the need to consider multiple phases of the reproductive cycle when assessing the effects of environmental variability on Arctic-breeding birds.


2017 ◽  
Vol 67 (2) ◽  
pp. 81-92
Author(s):  
Marta Biaggini ◽  
Claudia Corti

Human activities cause increasingly deep alterations to natural environments. Yet, the effects on vertebrates with low dispersal capacity are still poorly investigated, especially at field scale. Life history variation represents one means by which species can adapt to a changing environment. Among vertebrates, lizards exhibit a high degree of variation in life-history traits, often associated with environmental variability. We examined the female breeding output ofPodarcissiculus(Lacertidae) inside agricultural habitats, to test whether different cultivation and management influence the life-history traits of this species. Interestingly, we recorded variability of female breeding output at a very fine scale, namely among adjacent vineyards and olive orchards under different management levels. Lizards displayed the lowest breeding effort in the almost unmanaged sites, while clutch mass, relative fecundity and mean egg mass slightly increased in more intensively managed sites. However, in the most intensive cultivations we detected a life-history trade-off, where eggs from larger clutches tended to be relatively smaller than eggs from smaller clutches. This pattern suggests that agriculture can influence lizard reproductive output, partly favouring it in the presence of medium intensity cultivation but causing, in the most intensively managed sites, some environmental constraints that require a peculiar partitioning of the breeding resources. Even though further studies are needed to clarify the mechanisms driving the observed pattern, our results can be considered a starting point for evaluating the analysis of lizard breeding features as a tool to assess the impact of human activities, at least in agricultural environments.


2015 ◽  
Vol 72 (8) ◽  
pp. 2223-2233 ◽  
Author(s):  
Chongliang Zhang ◽  
Yong Chen ◽  
Yiping Ren

AbstractEcosystem models, specifically multispecies dynamic models, have been increasingly used to project impacts of fishing activity on the trophodynamics of ecosystems to support ecosystem-based fisheries management. Uncertainty is unavoidable in modelling processes and needs to be recognized and properly quantified before models are utilized. Uncertainty was assessed in this study for a multispecies size-spectrum model that quantifies community structure and ecological characteristics. The uncertainty was assumed to result from errors in fish life-history and metabolic scale parameters, environmental variability, fishing variability, and sampling errors. Given the same level of imprecision, metabolic scale parameters had the dominant influence on the uncertainty of the size spectrum modelling results, followed by life-history parameters. Both types of errors led to “scenario uncertainty”, suggesting the possible existence of alternative states of community structure. Environmental variability, fishing variability, and observation errors resulted in “statistical uncertainty”, implying that such uncertainty can be described adequately in statistical terms. The results derived from such a simulation study can provide guidance for identifying research priorities to help narrow the gap in scientific knowledge and reduce the uncertainty in fisheries management.


2010 ◽  
Vol 143 (1) ◽  
pp. 173-181 ◽  
Author(s):  
Chris A.M. Van Turnhout ◽  
Ruud P.B. Foppen ◽  
Rob S.E.W. Leuven ◽  
Arco Van Strien ◽  
Henk Siepel

2003 ◽  
Vol 72 (1) ◽  
pp. 36-46 ◽  
Author(s):  
J. M. Reid ◽  
E. M. Bignal ◽  
S. Bignal ◽  
D. I. McCracken ◽  
P. Monaghan

Sign in / Sign up

Export Citation Format

Share Document