Schwann cells co-cultured with stimulated T cells and antigen express major histocompatibility complex (MHC) class II determinants without interferon-γ pretreatment: synergistic effects of interferon-γ and tumor necrosis factor on MHC class II induction

1989 ◽  
Vol 19 (1) ◽  
pp. 177-183 ◽  
Author(s):  
Ann E. Kingston ◽  
Kristin Bergsteinsdottir ◽  
Kristjan R. Jessen ◽  
Pieter H. Der Van Meide ◽  
M. Joseph Colston ◽  
...  
Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1781-1788 ◽  
Author(s):  
W Ertel ◽  
MH Morrison ◽  
A Ayala ◽  
IH Chaudry

Hemorrhagic shock suppresses the ability of Kupffer cells (KC) to present antigen and express the major histocompatibility complex class II (Ia) antigen. These alterations are concomitant with an enhanced release of cytokines (tumor necrosis factor [TNF], interleukin-1 [IL- 1], IL-6) and prostaglandin E2 (PGE2) by KC after hemorrhagic shock. The aim of this study was to determine whether chloroquine (CQ) administration in vivo before or after hemorrhage affects the altered cytokine and PGE2 release by KC as well as the capacity of KC to present antigen and express Ia. To study this, C3H/HeN mice were bled to and maintained at a mean arterial blood pressure of 35 mm Hg for 60 minutes, followed by fluid resuscitation. Chloroquine (10 mg/kg body weight) was injected intramuscularly 2 hours before or during resuscitation following shock. The administration of CQ led to a significant reduction in the hemorrhage-induced elevation of TNF, IL-6, and PGE2 release by KC; however, IL-1 secretion was not affected by CQ. In addition, CQ treatment abolished the hemorrhage-induced increase in circulating TNF and IL-6. These changes in cytokine and PGE2 release following CQ administration correlated with a significant enhancement of the antigen-presenting capacity of KC. No differences were observed between pretreatment and posttreatment with CQ. Our data indicate that CQ selectively inhibits the release of TNF, IL-6, and PGE2 by KC, while IL-1 secretion was unaffected. Because the reduction of these inflammatory mediators was concomitant with a significant improvement of KC capacity to present antigen and express Ia, we propose that TNF, IL-6, and PGE2 play a pivotal role in the induction of posthemorrhage immunosuppression. Furthermore, the data suggest that the suppression of KC functions occurs during or after resuscitation, because posttreatment with CQ was as effective as pretreatment. Additional studies indicated that the survival of animals after hemorrhage and sepsis was significantly increased by posttreatment of hemorrhaged mice with CQ. Thus, CQ, because of its unique ability to selectively inhibit the release of inflammatory cytokines and prostaglandins, represents a potent immunomodulating agent in the treatment of conditions associated with increased cytokine release and for decreasing the mortality from sepsis after hemorrhage.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1781-1788 ◽  
Author(s):  
W Ertel ◽  
MH Morrison ◽  
A Ayala ◽  
IH Chaudry

Abstract Hemorrhagic shock suppresses the ability of Kupffer cells (KC) to present antigen and express the major histocompatibility complex class II (Ia) antigen. These alterations are concomitant with an enhanced release of cytokines (tumor necrosis factor [TNF], interleukin-1 [IL- 1], IL-6) and prostaglandin E2 (PGE2) by KC after hemorrhagic shock. The aim of this study was to determine whether chloroquine (CQ) administration in vivo before or after hemorrhage affects the altered cytokine and PGE2 release by KC as well as the capacity of KC to present antigen and express Ia. To study this, C3H/HeN mice were bled to and maintained at a mean arterial blood pressure of 35 mm Hg for 60 minutes, followed by fluid resuscitation. Chloroquine (10 mg/kg body weight) was injected intramuscularly 2 hours before or during resuscitation following shock. The administration of CQ led to a significant reduction in the hemorrhage-induced elevation of TNF, IL-6, and PGE2 release by KC; however, IL-1 secretion was not affected by CQ. In addition, CQ treatment abolished the hemorrhage-induced increase in circulating TNF and IL-6. These changes in cytokine and PGE2 release following CQ administration correlated with a significant enhancement of the antigen-presenting capacity of KC. No differences were observed between pretreatment and posttreatment with CQ. Our data indicate that CQ selectively inhibits the release of TNF, IL-6, and PGE2 by KC, while IL-1 secretion was unaffected. Because the reduction of these inflammatory mediators was concomitant with a significant improvement of KC capacity to present antigen and express Ia, we propose that TNF, IL-6, and PGE2 play a pivotal role in the induction of posthemorrhage immunosuppression. Furthermore, the data suggest that the suppression of KC functions occurs during or after resuscitation, because posttreatment with CQ was as effective as pretreatment. Additional studies indicated that the survival of animals after hemorrhage and sepsis was significantly increased by posttreatment of hemorrhaged mice with CQ. Thus, CQ, because of its unique ability to selectively inhibit the release of inflammatory cytokines and prostaglandins, represents a potent immunomodulating agent in the treatment of conditions associated with increased cytokine release and for decreasing the mortality from sepsis after hemorrhage.


1992 ◽  
Vol 176 (1) ◽  
pp. 275-280 ◽  
Author(s):  
M A Blackman ◽  
F E Lund ◽  
S Surman ◽  
R B Corley ◽  
D L Woodland

It has been established that at least some V beta 17+ T cells interact with an endogenous superantigen encoded by the murine retrovirus, Mtv-9. To analyze the role of major histocompatibility complex (MHC) class II molecules in presenting the Mtv-9 encoded superantigen, vSAG-9 to V beta 17+ hybridomas, a panel of nine hybridomas was tested for their ability to respond to A20/2J (H-2d) and LBK (H-2a) cells which had been transfected with the vSAG-9 gene. Whereas some of the hybridomas recognized vSAG-9 exclusively in the context of H-2a, other hybridomas recognized vSAG-9 exclusively in the context of H-2d or in the context of both H-2d and H-2a. These results suggest that: (a) the class II MHC molecule plays a direct role in the recognition of retroviral superantigen by T cells, rather than serving simply as a platform for presentation; and, (b) it is likely that components of the TCR other than V beta are involved in the vSAG-9/TCR/class II interaction.


Blood ◽  
1997 ◽  
Vol 89 (6) ◽  
pp. 2203-2209 ◽  
Author(s):  
Allan D. Hess ◽  
Emilie C. Bright ◽  
Christopher Thoburn ◽  
Georgia B. Vogelsang ◽  
Richard J. Jones ◽  
...  

Abstract Administration of the immunosuppressive drug cyclosporine after autologous bone marrow transplantation induces a systemic autoimmune syndrome resembling graft-versus-host disease (GVHD). This syndrome termed autologous GVHD has significant antitumor activity. Associated with autologous GVHD is the development of T lymphocytes that recognize major histocompatibility complex (MHC) class II determinants, including self. The present studies attempted to characterize and define the molecular specificity of the effector T lymphocytes in autologous GVHD induced in patients with metastatic breast cancer. The results suggest that the effector cells associated with human autologous GVHD are CD8+ T lymphocytes expressing the α/β T-cell receptor. Additional studies show that the effector T cells recognize MHC class II antigens in association with a peptide from the invariant chain (CLIP). Pretreatment of autologous lymphoblast target cells with anti-CLIP antibody completely blocked lysis mediated by autologous GVHD effector T cells. On the other hand, force loading this peptide markedly enhanced the susceptibility of the target cells to recognition by the autoreactive T cells. The recognition of the MHC class II CLIP complex may account for the novel specificity of the effector T cells associated with human autologous GVHD. Moreover, identification of the target peptide may allow for the development of novel immunotherapeutic strategies to enhance the antitumor efficacy of autologous GVHD.


1996 ◽  
Vol 184 (5) ◽  
pp. 1747-1753 ◽  
Author(s):  
J F Katz ◽  
C Stebbins ◽  
E Appella ◽  
A J Sant

We have studied the consequences of invariant chain (Ii) and DM expression on major histocompatibility complex (MHC) class II function. Ii has a number of discrete functions in the biology of class II, including competitive blocking of peptide binding in the endoplasmic reticulum and enhancing localization in the endocytic compartments. DM is thought to act primarily in endosomes to promote dissociation of the Ii-derived (CLIP) peptide from the class II antigen-binding pocket and subsequent peptide loading. In this study, we have evaluated the functional role of Ii and DM by examining their impact on surface expression of epitopes recognized by a large panel of alloreactive T cells. We find most epitopes studied are influenced by both Ii and DM. Most strikingly, we find that surface expression of a significant fraction of peptide-class II complexes is extinguished, rather than enhanced, by DM expression within the APC. The epitopes antagonized by DM do not appear to be specific for CLIP. Finally, we found that DM was also able to extinguish recognition of a defined peptide derived from the internally synthesized H-2Ld protein. Thus, rather than primarily serving in the removal of CLIP, DM may have a more generalized function of editing the array of peptides that are presented by class II. This editing can be either positive or negative, suggesting that DM plays a specifying role in the display of peptides presented to CD4 T cells.


Sign in / Sign up

Export Citation Format

Share Document